精英家教网 > 高中数学 > 题目详情

【题目】已知a,b,c分别为△ABC三个内角A,B,C所对的边长,且acosB﹣bcosA= c.
(1)求 的值;
(2)若A=60°,求 的值.

【答案】
(1)解:△ABC中,由条件利用正弦定理

可得sinAcosB﹣sinBcosA= sinC.

又sinC=sin(A+B)=sinAcosB+cosAsinB,所以, sinAcosB= sinBcosA,

可得 =


(2)解:若A=60°,则tanA= ,得tanB=

∵cosC=

= =﹣ tan(A+B)= =﹣


【解析】(1)△ABC中,由条件利用正弦定理可得sinAcosB﹣sinBcosA= sinC.又sinC=sin(A+B)=sinAcosB+cosAsinB,可得 sinAcosB= sinBcosA,由此可得 的值.(2)可求tanA= ,由(1)得tanB= .利用余弦定理,两角和的正切函数公式即可化简求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一组数据x1 , x2 , x3 , x4 , x5的平均数是2,方差是 ,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数,方差分别是(
A.3,
B.3,
C.4,
D.4,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 满足| |=| |=1, = ,若向量 满足| + |≤1,则| |的最大值为(
A.1
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前三项依次为a﹣2,a+2,a+8,则an=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)求函数f(x)= (x<﹣1)的最大值,并求相应的x的值.
(2)已知正数a,b满足2a2+3b2=9,求a 的最大值并求此时a和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥P﹣ABC中,PA⊥平面ABC,AB=BC=AC=2,PA= ,E,F分别是PB,BC的中点,则EF与平面PAB所成的角等于(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 设an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn , bn+1)在直线y=x+2上.
(1)求an , bn
(2)若数列{bn}的前n项和为Bn , 比较 + +…+ 与1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,且过点
(1)求椭圆的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若 . (i) 求 的最值;
(ii) 求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案