精英家教网 > 高中数学 > 题目详情
7.设命题$p:a∈\{y|y=\sqrt{-{x^2}+2x+8},x∈R\}$,命题q:关于x的方程x2+x-a=0有实根.
(1)若p为真命题,求a的取值范围;
(2)若“p∧q”为假命题,且“p∨q”为真命题,求a的取值范围.

分析 (1)若p为真命题,根据根式成立的条件进行求解即可求a的取值范围;
(2)若“p∧q”为假命题,且“p∨q”为真命题,得到p与q一真一假,即可求a的取值范围.

解答 解:(1)由题意得,$y=\sqrt{-{x^2}+2x+8}=\sqrt{-{{(x-1)}^2}+9}∈[0,3]$
故p为真命题时a的取值范围为[0,3].
(2)故q为真命题时a的取值范围为$a≥-\frac{1}{4}$
由题意得,p与q一真一假,从而
当p真q假时有  $\left\{\begin{array}{l}0≤a≤3\\ a<-\frac{1}{4}\end{array}\right.$a无解;
当p假q真时有$\left\{\begin{array}{l}a<0或a>3\\ a≥-\frac{1}{4}\end{array}\right.$∴$a>3或-\frac{1}{4}≤a<0$.      
∴实数a的取值范围是$[-\frac{1}{4},0)∪(3,+∞)$.

点评 本题主要考查复合命题的真假判断以及真假关系的应用,求出命题成立的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数f(x)=b(1-$\frac{2}{1+{2}^{x}}$)+$\frac{a•({4}^{x}-1)}{{2}^{x}}$+3(a、b为常数),若f(x)在(0,+∞)上有最大值11,则f(x)在(-∞,0)上有(  )
A.最大值10B.最小值-5C.最小值-4D.最大值5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解不等式a2x2-ax-2<0(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某礼堂有20排座位,第一排有18个座位,以后每排都比第一排多2个位置,这个礼堂共能做740人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.“x2<1”是“0<x<1”成立的必要不充分条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)={log_a}\frac{1-mx}{x-1}(a>0,a≠1)$是奇函数.
(1)求实数m的值;
(2)是否存在实数p,a,当x∈(p,a-2)时,函数f(x)的值域是(1,+∞).若存在,求出实数p,a;若不存在,说明理由;
(3)令函数g(x)=-ax2+6(x-1)af(x)-5,当x∈[4,5]时,求函数g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂.统计调查表明:垃圾处理厂对城A的影响度与CA长度的平方成反比,比例系数为4,对城B的影响度与CB长度的平方成反比,比例系数为K.设CA=xkm,垃圾处理厂对城A和城B的影响度之和记为总影响度y;当C为弧AB的中点时,对城A和城B的总影响度为0.065.
(1)将y表示成x的函数;
(2)当x为多少时,垃圾处理厂对城A和城B的总影响度最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某公司在今年年初用98万元购进一套设备,并立即投入生产使用,该设备每年需要花费一定的维修保养费,假设使用x年的维修保养费一共为2x2+10x万元,则该设备使用后,每年的总收入为50万元,设使用x(x∈N*)年后的盈利额为y万元.
(1)写出y与x之间的函数解析式;
(2)从第几年开始,该设备开始盈利(盈利额为正值);
(3)使用若干年后,对该设备的处理方案有两种:
①当年平均盈利额(即$\frac{y}{x}$)达到最大值时,以30万元价格处理该设备;
②当盈利额达到最大值时,以12万元价格处理该设备.
问用哪种方案处理较为合理?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.数列{an}满足:a1=0,a2=1,an=an-1+2an-2(n≥3)计一个算法,列出数列{an}的前20项,并画出程序框图.

查看答案和解析>>

同步练习册答案