精英家教网 > 高中数学 > 题目详情

【题目】已知点在椭圆上,且椭圆的离心率为.

(1)求椭圆的方程;

(2)若为椭圆的右顶点,点是椭圆上不同的两点(均异于)且满足直线斜率之积为.试判断直线是否过定点,若是,求出定点坐标,若不是,说明理由.

【答案】(1) ;(2)答案见解析.

【解析】试题分析:(1)由点在椭圆上,且椭圆的离心率为,结合性质 ,列出关于的方程组,求出,即可得椭圆的方程;(2)由题意,直线的斜率存在,可设直线的方程为 ,联立,得,根据韦达定理、斜率公式及直线斜率之积为,可得,解得,将以上结论代入直线方程即可得结果.

试题解析:(1)可知离心率,故有

又有点在椭圆上,代入得

解得

故椭圆的方程为.

(2)由题意,直线的斜率存在,可设直线的方程为

联立.

.

∵直线斜率之积为.

而点,∴.

.

化简得

化简得,解得

时,直线的方程为直线斜率之积为,过定点.

代入判别式大于零中,解得.

时,直线的方程为,过定点,不符合题意.

故直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线与椭圆交于点轴上方),且.设点轴上的射影为,三角形的面积为2(如图1.

1)求椭圆的方程;

2)设平行于的直线与椭圆相交,其弦的中点为.

①求证:直线的斜率为定值;

②设直线与椭圆相交于两点轴上方),点为椭圆上异于一点,直线于点于点,如图2,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点坐标为

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点,过点的直线(与轴不重合)与椭圆交于两点,直线与直线相交于点,试证明:直线轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018贵州遵义市高三上学期第二次联考设抛物线的准线与轴交于,抛物线的焦点为,以为焦点,离心率的椭圆与抛物线的一个交点为;自引直线交抛物线于两个不同的点,设

)求抛物线的方程和椭圆的方程;

)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是 (为参数).

(1)将曲线的极坐标方程化为直角坐标方程;

(2)若直线与曲线相交于两点,且,求直线的倾斜角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与直线都经过点.直线平行,且与椭圆交于两点,直线轴分别交于两点.

(1)求椭圆的方程;

(2)证明: 为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据中国日报网报道:2017年11月13日,TOP500发布的最新一期全球超级计算机500强榜单显示,中国超算在前五名中占据两席,其中超算全球第一“神威太湖之光”完全使用了国产品牌处理器。为了了解国产品牌处理器打开文件的速度,某调查公司对两种国产品牌处理器进行了12次测试,结果如下(数值越小速度越快,单位是MIPS

测试1

测试2

测试3

测试4

测试5

测试6

测试7

测试8

测试9

测试10

测试11

测试12

品牌A

3

6

9

10

4

1

12

17

4

6

6

14

品牌B

2

8

5

4

2

5

8

15

5

12

10

21

分别表示第次测试中品牌A和品牌B的测试结果,记

)求数据的众数;

)从满足的测试中随机抽取两次,求品牌A的测试结果恰好有一次大于品牌B的测试结果的概率

(Ⅲ)经过了解,前6次测试是打开含有文字和表格的文件,后6次测试是打开含有文字和图片的文件.请你依据表中数据,运用所学的统计知识,对这两种国产品牌处理器打开文件的速度进行评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

1)若从第345组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第345组各抽取多少名志愿者?

2)在(1)的条件下,该市决定在第34组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知点以原点为极点, 轴的正半轴为极轴建立坐标系,曲线的极坐标方程为过点作极坐标方程为的直线的平行线分别交曲线两点.

1)写出曲线和直线的直角坐标方程;

(2)若成等比数列,求的值.

查看答案和解析>>

同步练习册答案