【题目】在一个不透明的口袋中装有大小、形状完全相同的个小球,将它们分别编号为,,,…,,甲、乙、丙三人从口袋中依次各抽出个小球.甲说:我抽到了编号为的小球,乙说:我抽到了编号为的小球,丙说:我没有抽到编号为的小球.已知甲、乙、丙三人抽到的个小球的编号之和都相等,且甲、乙、丙三人的说法都正确,则丙抽到的个小球的编号分别为________________.
【答案】,,.
【解析】
利用等差数列求和公式求出所有球的编号的和,得到每个人抽出三个球的编号和,可得甲抽到的另外两个小球的编号和为6,乙抽到的另外两个小球的编号和为7,分类讨论,排除、验证即可得结果.
因为甲、乙、丙三人抽到的个小球的编号之和都相等,所以每个人抽到的个小球的编号之和为.设甲抽到的另外两个小球的编号分别为,,乙抽到的另外两个小球的编号分别为,,则,,所以,的取值只有与,与两种情况.当甲抽到编号为与的小球时,由可知乙抽到编号为与的小球,与丙没有抽到编号为的小球矛盾,所以甲抽到编号为与的小球,由可知乙抽到编号为与6的小球,则丙抽到的个小球的编号分别为,,,故答案为,,.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,平面.
(1)证明:平面;
(2)过点作一平行于平面的截面,画出该截面,说明理由,并求夹在该截面与平面之间的几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一个口袋中装有n个红球(n≥1且n∈N+)和2个白球,从中有放回地连续摸三次,每次摸出2个球,若2个球颜色不同则为中奖,否则不中奖.
(1)当n=3时,设三次摸球中中奖的次数为X,求随机变量X的分布列;
(2)记三次摸球中恰有两次中奖的概率为P,求当n取多少时,P的值最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;
(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:
车型 报废年限 | 1年 | 2年 | 3年 | 4年 | 总计 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?
参考数据:,,,.
参考公式:相关系数,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点分别为,离心率为,过的直线与椭圆交于两点,且的周长为
(1)求椭圆的方程;
(2)若直线与椭圆分别交于两点,且,试问点到直线的距离是否为定值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产A、B两种产品,根据市场调查,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的平方根成正比,其关系如图2(注:单位是万元).
图1 图2
(1)若A、B两种产品的利润表示为投资的函数分别为、,求出它们的表达式并注明定义域;
(2)现企业有20万元资金全部投入A、B两种产品的生产,问:怎样分配这20万元资金,能使获得的利润最大,其最大利润是多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com