精英家教网 > 高中数学 > 题目详情
12.如图所示,P是正方形ABCD对角线BD上一点,四边形PECF是矩形,求证:
(1)PA=EF;
(2)PA⊥EF.

分析 (1)利用正方形的关于对角线成轴对称,利用轴对称的性质可得出EF=AP;
(2)延长FP交AB于点G,延长AP交EF于点H,易证△PAG≌△FP,可求得∠FPH+∠PFH=90°,可证得结论.

解答 证明:(1)如图,连接PC,
∵PE⊥DC,PF⊥BC,四边形ABCD是正方形,
∴∠PEC=∠PFC=∠ECF=90°,
∴四边形PECF为矩形,
∴PC=EF,
又∵P为BD上任意一点,
∴PA、PC关于BD对称,
可以得出,PA=PC,所以EF=AP.
(2)如图,延长FP交AB于点G,延长AP交EF于点H,
∵四边形ABCD为正方形,
∴∠C=∠ABC=90°,
又∵PE⊥BC,PF⊥CD,
∴四边形PECF为矩形,
同理四边形BCFG也为矩形,
∴PE=FC=GB,
又∵BD平分∠ABC,
∴∠GBD=45°,
又∵PG⊥AB,PE⊥BC,
∴四边形PEBG是正方形
∴PG=BG=PE,
又∵AB=BC=CD,
∴AG=EC=PF,
在△PAG和△EFP中,$\left\{\begin{array}{l}{AG=PF}\\{∠AGP=∠FPE}\\{PG=PE}\end{array}\right.$,
∴△PAG≌△EFP(SAS),
∴∠APG=∠FEP=∠FPH,
∵∠FEP+∠PFH=90°,
∴∠FPH+∠PFH=90°,
∴AP⊥EF.

点评 此题主要考查了正方形的对称性,全等三角形的判定与性质,矩形的判定与性质,作辅助线构造出全等三角形是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AD,AB的中点.
(1)求证:EF∥平面CB1D1
(2)求CB1与平面CAA1C1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,四棱锥P-ABCD中,PA⊥底面ABCD,BA⊥AD,AD=CD=2AB=2PA=2,AB∥CD,E是PC的中点,F是DC上一动点,R是PB上一个动点.
(1)求证:当F是DC中点时,无论R在PB上的何处,都有平面BEF⊥平面RCD;
(2)若CF=2DF,当DR∥平面EFB时,求四棱锥R-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设空间两个单位向量$\overrightarrow{OA}$=(m,n,0),$\overrightarrow{OB}$=(0,n,p)与向量$\overrightarrow{OC}$=(1,1,1)的夹角都等于$\frac{π}{4}$,求cos∠AOB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=6,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{4}$,求$\overrightarrow{a}$•$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点A,C关于y轴对称,点A,B关于原点对称.
(1)若椭圆的离心率为$\frac{\sqrt{2}}{2}$,且A($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$),求椭圆的标准方程;
(2)设D为直线BC与x轴的交点,E为椭圆上一点,且A,D,E三点共线,若直线AB,BE的斜率分别为k1,k2,试问,k1•k2是否为定值?若是,求出该定值;若不是,请加以说明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=f(x)是偶函数,且f(1)>f(-2),则f(1)>f(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A(1,2),B(5,-2),且$\overrightarrow{a}$=$\frac{1}{2}$$\overrightarrow{AB}$,求向量$\overrightarrow{a}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,动点M到点F(1,0)的距离比它到y轴的距离多1,记点M的轨迹为C.
(1)求轨迹C的方程;
(2)若P是轨迹C上的动点.P点在y轴上的射影是点N,点A(3,4),当x≥0时,求|PA|+|PN|的最小值.

查看答案和解析>>

同步练习册答案