精英家教网 > 高中数学 > 题目详情
(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.
分析:(1)在底面直角梯形ABCD中连接AC,利用余弦定理在三角形ACD中求出CD=
2
,从而得出AC⊥CD,所以AC为PC在平面ABCD内的射影,得CD⊥PC,因此∠PCA是二面角P-CD-A的平面角,最后在三角形PAC中求出此角的正弦,从而得出二面角P-CD-A的平面角正切值;
(2)过A作AH⊥PC于H,则AH⊥PC,故AH为A点到平面PCD之距离,在△PAC中,求得PA=1,AC=
2
,PC=
3
,从而得出
AH=
2
3
=
6
3
,故A点到平面PCD的距离为
6
3
解答:解:(1)四棱锥P-ABCD中,底面ABCD是直角梯形
且BC∥DA,∠BAC=90°
连接AC,而AB=CB=1,则AC=
2

又因为AD=2,∠CAD=45°
由余弦定理可得CD=
2
,故AC⊥CD
∵PA⊥平面ABCD
∴AC为PC在平面ABCD内的射影
∴CD⊥PC
∴∠PCA是二面角P-CD-A的平面角
又PA=1,AC=
2
,所以PC=
3
,故sin∠PCA=
3
3

所以二面角P-CD-A的平面角的正切值等于
2
2

(2)由(1)可知DC⊥平面PAC
∴平面PAC⊥平面PCD
过A作AH⊥PC于H,则AH⊥PC,故AH为A点到平面PCD之距离
在△PAC中,PA=1,AC=
2
,PC=
3

∴AH=
2
3
=
6
3

故A点到平面PCD的距离为
6
3
点评:本题考查了立体几何中的二面角的计算,属于中档题.在计算点到平面的距离时,注意要充分利用线面垂直和面面垂直的性质与判定.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•武汉模拟)已知实数x,y满足
y-x≥1
x+y≤1
-2x+y≤2
,则当z=3x-y取得最小值时(x,y)=
(-1,0)
(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)已知a>0,过M(a,0)任作一条直线交抛物线y2=2px(p>0)于P,Q两点,若
1
|MP|2
+
1
|MQ|2
为定值,则a=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如果关于x的方程ax+
1
x2
=3
有且仅有一个正实数解,那么实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)已知P为椭圆
x2
4
+y2=1
和双曲线x2-
y2
2
=1
的一个交点,F1,F2为椭圆的焦点,那么∠F1PF2的余弦值为
-
1
3
-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)从4双不同鞋子中取出4只鞋,其中至少有2只鞋配成一双的取法种数为
54
54
.(将计算的结果用数字作答)

查看答案和解析>>

同步练习册答案