【题目】如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是( )
A. 平面ABD⊥平面ABC B. 平面ADC⊥平面BDC
C. 平面ABC⊥平面BDC D. 平面ADC⊥平面ABC
科目:高中数学 来源: 题型:
【题目】如图,在空间几何体ABCDFE中,底面是边长为2的正方形,,,.
(1)求证:AC//平面DEF;
(2)已知,若在平面上存在点,使得平面,试确定点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,圆过点且与圆相切,设圆心的轨迹为曲线.
(1)求曲线的方程;
(2)点,为曲线上的两点(不与点重合),记直线的斜率分别为,若,请判断直线是否过定点. 若过定点,求该定点坐标,若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若,则称为的“不动点”;若,则称为的“稳定点”.函数的“不动点”和“稳定点”的集合分别记为和,即,.
()设函数,求集合和.
()求证:.
()设函数,且,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.
(1)证明:A1O∥平面B1CD1;
(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(且).
(1)函数是否过定点?若是求出该定点,若不是,说明理由.
(2)将函数的图象向下平移个单位,再向左平移个单位后得到函数,设函数的反函数为,求的解析式;
(3)在(2)的基础上,若函数过点,且设函数的定义域为,若在其定义域内,不等式恒成立,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com