精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)=
-2x+b2x+1+a
是奇函数.
(1)求a,b的值;        
(2)判断函数的单调性并证明;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
分析:(1)由f(x)为R上的奇函数得f(0)=0,f(-1)=-f(1),解出方程可得a,b值;
(2)由(1)知f(x)=
-2x+1
2x+1+2
=-
1
2
+
1
2x+1
,利用单调性定义可作出判断;
(3)由f(x)的奇偶性可得,f(t2-2t)+f(2t2-k)<0等价于f(t2-2t)<-f(2t2-k)=f(k-2t2),根据单调性可去掉符号“f”,转化为函数最值解决即可;
解答:解:(1)因为f(x)为R上的奇函数,
所以f(0)=0,即
-1+b
2+a
=0,解得b=1,
由f(-1)=-f(1),得
-2-1+1
20+a
=-
-2+1
22+a
,解得a=2,
所以a=2,b=1;
(2)f(x)为R上的奇函数,证明如下:
由(1)知f(x)=
-2x+1
2x+1+2
=-
1
2
+
1
2x+1

设x1<x2
则f(x1)-f(x2)=(-
1
2
+
1
2x1+1
)-(-
1
2
+
1
2x2+1
)=
2x2-2x1
(2x1+1)(2x2+1)

因为x1<x2,所以2x2-2x1>0,2x1+1>02x1+1>0,
所以f(x1)-f(x2)>0,即f(x1)>f(x2),
所以f(x)为减函数;
(3)因为f(x)为奇函数,所以f(t2-2t)+f(2t2-k)<0可化为f(t2-2t)<-f(2t2-k)=f(k-2t2),
又由(2)知f(x)为减函数,所以t2-2t>k-2t2,即3t2-2t>k恒成立,
而3t2-2t=3(t-
1
3
)2
-
1
3
≥-
1
3

所以k<-
1
3
点评:本题考查函数单调性的判断及其应用,考查函数恒成立问题,考查学生解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(x)f(x+2)=5,若f(2)=3,则f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(4-x)=-f(x),当x<2时,f(x)单调递减,如果x1+x2>4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

同步练习册答案