精英家教网 > 高中数学 > 题目详情

【题目】已知常数,数列的前项和为

(1)求数列的通项公式;

(2)若,且是单调递增数列,求实数的取值范围;

(3)若 ,对于任意给定的正整数,是否存在正整数,使得?若存在,求出的值(只要写出一组即可);若不存在,请说明理由;

【答案】(1) (2) (3) (或;…)

【解析】试题分析:(1)将条件中分式变成整式得,把换成,两式相减化简可得化简得根据等差数列定义可知数列为等差数列由等差数列通项公式写出公式即可。(2)由(1)可得,因为数列是单调递增数列,所以 ,化简得因为的正负与是奇数、偶数有关,故分两种情况讨论。当是奇数时, 可变为恒成立,构造函数求不等式右边的最大值,令,用函数单调性定义可证明单调性为减函数,所以;当是偶数时, 可变为恒成立,构造函数求不等式右边的最小值,令,利用函数单调性定义证明函数为增函数,所以可得所求范围。(3)由(1)及可求出,所以 假设对任意,总存在正整数,使,可得关于的关系式 整理可得给出的值,可求出的值。

试题解析:解:(1)

是以为首项, 为公差的等差数列,∴

(2) ,即

为奇数,则恒成立,

考察

,∴

为偶数,则恒成立,

考察

,∴;综上所述,

(3)由(1) .假设对任意,总存在正整数,使

,则 (或,则;…)

(或;…)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲正弦函数shx= 和双曲余弦函数chx= 与我们学过的正弦函数和余弦函数有许多类似的性质,请类比正弦函数和余弦函数的和角公式,写出双曲正弦或双曲余弦函数的一个类似的正确结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为的等边沿轴正方向滚动,某时刻与坐标原点重合(如图),设顶点的轨迹方程是,关于函数有下列说法

(1)的值域为

(2)是周期函数且周期为

(3)

(4)滚动后,当顶点第一次落在轴上时,的图象与轴所围成的面积为

其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x|x﹣2|.若关于x的方程f2(x)+af(x)+b=0(a,b∈R)恰有10个不同实数解,则a的取值范围为(
A.(0,2)
B.(﹣2,0)
C.(1,2)
D.(﹣2,﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是由个有序实数构成的一个数组,记作,其中

称为数组的“元”, 称为的下标,如果数组中的每个“元”都是来自数组

中不同下标的“元”,则称的子数组,定义两个数组

的关系数为

1 ,设的含有两个“元”的子数组,求

的最大值

2 ,且 的含有三个“元”

的子数组,求的最大值

3若数组中的“元”满足,设数组 含有

四个“元”,且,求的所有含有三个“元”

的子数组的关系数的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)当x∈[0, ]时,求| + |的取值范围;
(2)若g(x)=( + ,求当k为何值时,g(x)的最小值为﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中, 的中点,△是等腰三角形, 的中点, 上一点;

(1)若∥平面,求

(2)平面将三棱柱分成两个部分,求含有点的那部分体积;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C所对的边长,且acosB+bcosA=2ccosC.
(1)求角C的值;
(2)若c=4,a+b=7,求SABC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1:x2+y2=4与圆C2:(x﹣1)2+(y﹣3)2=4,过动点P(a,b)分别作圆C1、圆C2的切线PM,PN,(M,N分别为切点),若|PM|=|PN|,则a2+b2﹣6a﹣4b+13的最小值是(
A.5
B.
C.
D.

查看答案和解析>>

同步练习册答案