(本题满分10分)如图,已知四棱锥底面为菱形,平面,,分别是、的中点.
(1)证明:
(2)设, 若为线段上的动点,与平面所成的最大角的正切值为
,求此时异面直线AE和CH所成的角.
.(1)证明:见解析;(2)异面直线所成角300
【解析】
试题分析:(I)根据题意可得:△ABC为正三角形,所以AE⊥BC,又因为BC∥AD,所以AE⊥AD.又PA⊥AE,且PA∩AD=A,所以AE⊥平面PAD,进而可得答案;
(Ⅱ)先根据条件由(1)知AE⊥平面PAD,
则∠EHA为EH与平面PAD所成的角. 在Rt△EAH中,AE=,所以 当AH最短时,∠EHA最大进而得到异面直线的所成的角。
(1)证明:由四边形ABCD为菱形,∠ABC=60°,
可得△ABC为正三角形.因为E为BC的中点,
所以AE⊥BC.又BC∥AD,因此AE⊥AD.
因为PA⊥平面ABCD,
AE平面ABCD,所以PA⊥AE.而 PA平面PAD,
AD平面PAD 且PA∩AD=A,所以 AE⊥平面PAD,
又PD平面PAD.所以 AE⊥PD.
(2)解:设AB=2,H为PD上任意一点,
连接AH,EH. 由(1)知AE⊥平面PAD,
则∠EHA为EH与平面PAD所成的角.
在Rt△EAH中,AE=,所以 当AH最短时,∠EHA最大,
即当AH⊥PD时,∠EHA最大.此时tan∠EHA=
因此AH=.又AD=2,所以∠ADH=45所以 PA=2.
异面直线所成角300
考点:本题主要是考查线面垂直的证明以及异面直线所成的角的求解。
点评:解决此类问题的关键是熟练掌握几何体的结构特征,以便利用已知条件得到空间的线面关系,并且便于建立坐标系利用向量的有关运算解决空间角等问题
科目:高中数学 来源:2014届河南省高二上学期期末考试理科数学试卷(解析版) 题型:解答题
(本题满分10分)
如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,
⑴求证:A1C⊥平面BDE;
⑵求A1B与平面BDE所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年甘肃省高三第二次诊断性考试理科数学试卷 题型:解答题
(本题满分10分)
如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).
(Ⅰ)求某个家庭得分为的概率?
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.请问某个家庭获奖的概率为多少?
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源:2011年福建省龙岩市高一上学期期末考试数学试卷 题型:解答题
(本题满分10分)如图,四边形ABCD是正方形,PB^平面ABCD,MA^平面ABCD,
PB=AB=2MA. 求证:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.
查看答案和解析>>
科目:高中数学 来源:2013届内蒙古呼伦贝尔市高二上学期第一次综合考试理科数学 题型:解答题
(本题满分10分)如图,平行四边形EFGH的四个顶点分别在空间四边形ABCD的边AB、BC、CD、DA上,求证:BD∥面EFGH.
查看答案和解析>>
科目:高中数学 来源:2011年浙江省台州中学高二上学期第一次统练试题理科数学 题型:解答题
本题满分10分)如图,在长方体-中,分别是,的中点,分别是,中点,
(Ⅰ)求三棱锥的体积;
(Ⅱ)求证:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com