精英家教网 > 高中数学 > 题目详情
函数y=2sinx(sinx+cosx)的最大值为(  )
A、1+
2
B、
2
-1
C、
2
D、2
分析:把函数式展开,可以看出要逆用正弦和余弦的二倍角公式,变为y=Asin(ωx+φ)的形式,在定义域是全体实数的条件下,根据正弦的值域求本题的最值.
解答:解:∵y=2sinx(sinx+cosx)
∴y=2sin2x+2sinxcosx
∴y=1-cos2x+sin2x=
2
sin(2x-
π
4
)+1
∵当x∈R时,sin(2x-
π
4
)∈[-1,1]
∴y的最大值为
2
+1,
故选A.
点评:三角函数是高中一年级数学教学中的一个重要内容,公式繁多应用灵活给学生的学习带来了一定的困难.为了学生掌握这一单元的知识,必须使学生熟练的掌握所有公式,在此基础上并能灵活的运用公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=2sinx的定义域为[a,b],值域为[-2,1],则b-a的值不可能是(  )
A、
6
B、π
C、2π
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cosx-sinx的图象可由函数y=
2
sinx
的图象(  )
A、向左
π
4
平移个长度单位
B、向左
4
平移个长度单位
C、向右
π
4
平移个长度单位
D、向右
4
平移个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asinωx+Bcosωx(其中A、B、ω是非零常数,且ω>0)的最小正周期为2,且当x=
1
3
时,f(x)取得最大值2.
(1)求函数f(x)的表达式;
(2)求函数f(x+
1
6
)的单调递增区间,并指出该函数的图象可以由函数y=2sinx,x∈R的图象经过怎样的变换得到?
(3)在闭区间[
21
4
23
4
]上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数y=2sinx+acosx的值域为[-3,3],则a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2sinx-
3
图象上的一点P的横坐标为
π
3
,则点P处的切线方程为
y=x-
π
3
y=x-
π
3

查看答案和解析>>

同步练习册答案