【题目】为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?
(3)通过该统计图,可以估计该地学生跳绳次数的众数是______,中位数是_______.
【答案】(1)150;(2)88%; (3)115, 121.3
【解析】
试题分析:(1)根据从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12,用比值做出样本容量.做出的样本容量和第二小组的频率.(2)根据上面做出的样本容量和前两个小长方形所占的比例,用所有的符合条件的样本个数之和,除以样本容量得到概率.(3)在频率分布直方图中最高的小长方形的底边的中点就是这组数据的众数,处在把频率分布直方图所有的小长方形的面积分成两部分的一条垂直与横轴的线对应的横标就是中位数.
试题解析:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,
因此第二小组的频率为:
又因为第二小组频率=,
所以
(2)由图可估计该学校高一学生的达标率约为88%;
(3)跳绳次数的众数是:115,中位数落在第四小组内,中位数是:121.3.
科目:高中数学 来源: 题型:
【题目】已知函数,
,其中
为实数.
(1)是否存在,使得
?若存在,求出实数
的取值范围;若不存在,请说明理由;
(2)若集合中恰有5个元素,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《算法统宗》是我国古代数学名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“竹筒容米”就是其中一首:家有八节竹一茎,为因盛米不均平;下头三节三生九,上梢三节贮三升;唯有中间二节竹,要将米数次第盛;若是先生能算法,也教算得到天明!大意是:用一根8节长的竹子盛米,每节竹筒盛米的容积是不均匀的,下端3节可盛米3.9升,上端3节可盛米3升.要按依次盛米容积相差同一数量的方式盛米,中间两节可盛米多少升?由以上条件,计算出这根八节竹筒的容积为( )
A. 升 B.
升 C.
升 D.
升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班倡议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查.调查结果如下表:
阅读名著的本数 | 1 | 2 | 3 | 4 | 5 |
男生人数 | 3 | 1 | 2 | 1 | 3 |
女生人数 | 1 | 3 | 3 | 1 | 2 |
(1)试根据上述数据,求这个班级女生阅读名著的平均本数;
(2)若从阅读本名著的学生中任选
人交流读书心得,求选到男生和女生各
人的概率;
(3)试比较该班男生阅读名著本数的方差与女生阅读名著本数的方差
的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点
,焦点在
轴上,离心率为
,右焦点到右顶点的距离为
.
(1)求椭圆的标准方程;
(2)是否存在与椭圆交于
两点的直线
,使得
成立?若存在,求出实数
的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是定义在
上的函数,如果存在
点,对函数
的图象上任意点
,
关于点
的对称点
也在函数
的图象上,则称函数
关于点
对称,
称为函数
的一个对称点,对于定义在
上的函数
,可以证明点
是
图象的一个对称点的充要条件是
,
.
(1)求函数图象的一个对称点;
(2)函数的图象是否有对称点?若存在则求之,否则说明理由;
(3)函数的图象是否有对称点?若存在则求之,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司有30名男职员和20名女职员,公司进行了一次全员参与的职业能力测试,现随机询问了该公司5名男职员和5名女职员在测试中的成绩(满分为30分),可知这5名男职员的测试成绩分别为16,24,18,
22,20,5名女职员的测试成绩分别为18,23,23,18,23,则下列说法一定正确的是( )
A. 这种抽样方法是分层抽样
B. 这种抽样方法是系统抽样
C. 这5名男职员的测试成绩的方差大于这5名女职员的测试成绩的方差
D. 该测试中公司男职员的测试成绩的平均数小于女职员的测试成绩的平均数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若对,不等式
恒成立,求实数
的取值范围;
(2)记,那么当
时,是否存在区间
使得函数在区间
上的值域恰好为
?若存在,请求出区间
;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com