精英家教网 > 高中数学 > 题目详情
若loga2<0,2b>1,则( )
A.0<a<1,b>0
B.a>1,b<0
C.a>1,b>0
D.0<a<1,b<0
【答案】分析:题目条件中:“loga2<0,2b>1”须化成同底数后,再利用对数函数与指数函数的单调性解决.
解答:解:∵loga2<0,
∴loga2<loga1,
∴0<a<1,
∵loga2<0,2b>1
∴2b>2
∴b>0
故选A.
点评:本题主要考查对数函数、指数函数的单调性,属于基础题,常规题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)计算(lg
1
4
-lg25)÷100 -
1
2
-
5(-10)5

(2)若loga2<0(a>0,a≠1),作出y=loga(x+1)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知原命题是“若f(x)=logax(a>0,a≠1)是减函数,则loga2<0”,则
(1)逆命题是“若loga2<0,则f(x)=logax(a>0,a≠1)是减函数”;
(2)否命题是“若f(x)=logax(a>0,a≠1)是减函数,则loga2≥0”;
(3)逆否命题是“若loga2≥0,则f(x)=logax(a>0,a≠1)是增函数”;
(4)逆否命题是“若loga2≥0,则f(x)=logax(a>0,a≠1)不是减函数”.
其中正确的结论是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知原命题是“若f(x)=logax(a>0,a≠1)是减函数,则loga2<0”,则
(1)逆命题是“若loga2<0,则f(x)=logax(a>0,a≠1)是减函数”;
(2)否命题是“若f(x)=logax(a>0,a≠1)是减函数,则loga2≥0”;
(3)逆否命题是“若loga2≥0,则f(x)=logax(a>0,a≠1)是增函数”;
(4)逆否命题是“若loga2≥0,则f(x)=logax(a>0,a≠1)不是减函数”.
其中正确的结论是(  )
A.(1)(2)B.(1)(3)C.(1)(4)D.(1)(2)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知原命题是“若f(x)=logax(a>0,a≠1)是减函数,则loga2<0”,则
(1)逆命题是“若loga2<0,则f(x)=logax(a>0,a≠1)是减函数”;
(2)否命题是“若f(x)=logax(a>0,a≠1)是减函数,则loga2≥0”;
(3)逆否命题是“若loga2≥0,则f(x)=logax(a>0,a≠1)是增函数”;
(4)逆否命题是“若loga2≥0,则f(x)=logax(a>0,a≠1)不是减函数”.
其中正确的结论是(  )
A.(1)(2)B.(1)(3)C.(1)(4)D.(1)(2)(4)

查看答案和解析>>

科目:高中数学 来源:2013年高考数学复习卷E(一)(解析版) 题型:选择题

已知原命题是“若f(x)=logax(a>0,a≠1)是减函数,则loga2<0”,则
(1)逆命题是“若loga2<0,则f(x)=logax(a>0,a≠1)是减函数”;
(2)否命题是“若f(x)=logax(a>0,a≠1)是减函数,则loga2≥0”;
(3)逆否命题是“若loga2≥0,则f(x)=logax(a>0,a≠1)是增函数”;
(4)逆否命题是“若loga2≥0,则f(x)=logax(a>0,a≠1)不是减函数”.
其中正确的结论是( )
A.(1)(2)
B.(1)(3)
C.(1)(4)
D.(1)(2)(4)

查看答案和解析>>

同步练习册答案