【题目】已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在x=1处的切线为l:3x﹣y+1=0,当x= 时,y=f(x)有极值.
(1)求a、b、c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.
【答案】
(1)解:由f(x)=x3+ax2+bx+c,得
f′(x)=3x2+2ax+b
当x=1时,切线l的斜率为3,可得2a+b=0.①
当x= 时,y=f(x)有极值,则f′ =0,
可得4a+3b+4=0.②
由①、②解得a=2,b=﹣4.
由于l上的切点的横坐标为x=1,
∴f(1)=4.∴1+a+b+c=4.
∴c=5.
(2)解:由(1)可得f(x)=x3+2x2﹣4x+5,
∴f′(x)=3x2+4x﹣4.
令f′(x)=0,得x=﹣2,或x= .
∴f(x)在x=﹣2处取得极大值f(﹣2)=13.
在x= 处取得极小值f = .
又f(﹣3)=8,f(1)=4.
∴f(x)在[﹣3,1]上的最大值为13,最小值为 .
【解析】(1)先对函数f(x)进行求导,根据f'(1)=3,f′ =0,f(1)=4可求出a,b,c的值,得到答案.(2)由(1)可知函数f(x)的解析式,然后求导数后令导函数等于0,再根据导函数的正负判断函数在[﹣3,1]上的单调性,最后可求出最值.
【考点精析】根据题目的已知条件,利用函数的极值与导数和函数的最大(小)值与导数的相关知识可以得到问题的答案,需要掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:
日期 | 11月1日 | 11月2日 | 11月3日 | 11月4日 | 11月5日 |
温差x(℃) | 8 | 11 | 12 | 13 | 10 |
发芽数y(颗) | 16 | 25 | 26 | 30 | 23 |
设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(注: , )
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是11月1日与11月5日的两组数据,请根据11月2日至11月4日的数据,求出y关于x的线性回归方程 ;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】水培植物需要一种植物专用营养液,已知每投放(且)个单位的营养液,它在水中释放的浓度 (克/升)随着时间 (天)变化的函数关系式近似为,其中,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.
(1)若只投放一次2个单位的营养液,则有效时间最多可能达到几天?
(2)若先投放2个单位的营养液,3天后再投放个单位的营养液,要使接下来的2天中,营养液能够持续有效,试求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题:①函数f(x)=sin2x一cos2x的最小正周期是;
②在等比数列〔}中,若,则a3=士2;
③设函数f(x)=,若有意义,则
④平面四边形ABCD中, ,则四边形ABCD是
菱形. 其中所有的真命题是:( )
A. ①②④ B. ①④ C. ③④ D. ①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列推理中属于归纳推理且结论正确的是( )
A.由an=2n﹣1,求出S1=12 , S2=22 , S3=32 , …,推断:数列{an}的前n项和Sn=n2
B.由f(x)=xcosx满足f(﹣x)=﹣f(x)对?x∈R都成立,推断:f(x)=xcosx为奇函数
C.由圆x2+y2=r2的面积S=πr2 , 推断:椭圆 =1的面积S=πab
D.由(1+1)2>21 , (2+1)2>22 , (3+1)2>23 , …,推断:对一切n∈N* , (n+1)2>2n
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 ,则导函数f′(x)是( )
A.仅有最小值的奇函数
B.既有最大值,又有最小值的偶函数
C.仅有最大值的偶函数
D.既有最大值,又有最小值的奇函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,函数的导函数为.
⑴ 若直线与曲线恒相切于同一定点,求的方程;
⑵ 若,求证:当时, 恒成立;
⑶ 若当时, 恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=lnx﹣ax(a> ),当x∈(﹣2,0)时,f(x)的最小值为1,则a的值等于 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com