精英家教网 > 高中数学 > 题目详情
已知直线l在极坐标系中的方程为θ=
π
4
,圆C在极坐标系中的方程为ρ=2cosθ,求圆C被直线l截得的弦长.
考点:简单曲线的极坐标方程
专题:坐标系和参数方程
分析:把极坐标方程化为直角坐标方程,再利用点到直线的距离公式、弦长公式求得圆C被直线l截得的弦长.
解答: 解:由题意可得,直线l的直角坐标方程为y=x,即x-y=0;圆C的直角坐标为(x-1)2+y2=1.
求得圆心C(1,0)到直线l:x-y=0的距离为d=
|1-0|
2
=
2
2

故圆C被直线l截得的弦长为2
r2-d2
=2
1-
1
2
=
2
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式、弦长公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

判断下列函数的奇偶性:
①f(x)=(x-1)2
②f(x)=
1-x2
|x+2|-2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方体ABCD-A1B1C1D1中,E、F分别为D1C1和B1C1的中点,P、Q分别为AC与BD、
A1C1与EF的交点.
(1)求证:D、B、F、E四点共面;
(2)若A1C与面DBFE交于点R,求证:P、Q、R三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,直线l过点(1,0)且与直线θ=
π
3
(ρ∈R)垂直,则直线l极坐标方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列叙述中错误的是(  )
A、A∈l,A∈α,B∈l,B∈a⇒l?α
B、梯形一定是平面图形
C、空间中三点能确定一个平面
D、A∈α,A∈β,B∈α,B∈β⇒α∩β=AB

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|x-a|+2x,若存在a∈[0,4],使得关于x的方程f(x)=tf(a)有三个不相等的实数根,则实数t的取值范围是(  )
A、(1,
9
8
B、(1,
3
2
C、(
9
8
3
2
D、(1,
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知偶函数f(x),对任意x1,x2∈R,恒有f(x1+x2)=f(x1)+f(x2)+2x1x2+1.求:
(1)f(0),f(1),f(2)的值;
(2)f(x)的表达式;
(3)F(x)=[f(x)]2-2f(x)在(0,+∞)上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=2(sinx-cosx)cosx的四个结论:
P1:最大值为
2

P2:最小正周期为π;
P3:单调递增区间为[kπ-
π
8
,kπ+
3
8
π],k∈Z;
P4:函数y=f(x)的一条对称轴是x=
8

其中正确的有(  )
A、1 个B、2个
C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex+x-1,g(x)=lnx+x2-2,若实数a,b满足f(a)=1,g(b)=1,则g(a),f(b),1的大小关系为
 

查看答案和解析>>

同步练习册答案