精英家教网 > 高中数学 > 题目详情
14.命题“若a2+b2=0,则a=b=0”的逆否命题是(  )
A.若a≠b≠0,则a2+b2≠0B.若a=b≠0,则a2+b2≠0
C.若a≠0且b≠0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0

分析 根据逆否命题的形式是条件、结论同时否定并交换,写出命题的逆否命题.

解答 解:命题“若a2+b2=0,则a=b=0”的逆否命题是:
若a≠0或b≠0,则a2+b2≠0,
故选:D.

点评 本题考查四种命题的形式,利用它们的形式写出需要的命题,注意“或”的否定是“且”,“且”的否定是“或”,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知p:幂函数y=(m2-m-1)xm在(0,+∞)上单调递增;q:|m-2|<1,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某商场计划在今年同时出售智能手机和变频空调,两种市场销售情况很好(有多少就能卖多少)的新产品,
一次该商场要根据实际情况(如资金、劳动力(工资)等)准备好月资金工艺量,以使每月的总利润达到最大,通过一个月的市场调查,得到销售这两种产品的有关数据如表:
资金产品所需资金(百元/台)月资金供应量(百元)
手机空调
成本4030600
劳动力(工资)2558
利润1110
怎样确定这两种产品的月供应量,才能使每月的总利润最大,总利润的最大值是多少百元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|0<2x+a≤3},B={x|-$\frac{1}{2}$<x<2}.
(1)当a=1时,求(∁RB)∪A;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把89化成二进制数使(  )
A.100100B.10010C.10100D.1011001

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a=log37,b=21.1,c=0.52.1,则(  )
A.b<a<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知角α是第四象限角,角α的终边经过点P(4,y),且sinα=$\frac{y}{5}$,则tanα的值是(  )
A.$-\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax3-3x2+1,a∈R.
(1)当a=1时,求函数f(x)的单调区间和极值;
(2)若方程f(x)=-3x2-3x+2恰有一个实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知A,B∈{-3,-1,1,2}且A≠B,则直线Ax+By+1=0的斜率小于0的概率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案