精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若函数有零点,求实数的取值范围;

(2)证明:当时,

【答案】(I);(II)详见解析.

【解析】试题分析:(I)对函数求导,可得函数单调性,并求得函数的最小值,若函数有零点,函数最小值小于零且在定义域范围有函数值大于零,解不等式可得的范围;()代入不等式化简为,可构造函数 利用导数判断单调性可知在 条件下 最小值为 最大值为.可证命题.

试题解析:

()法1: 函数的定义域为.

, .

因为,, ; , .

所以函数上单调递减, 上单调递增.

, .

, , ,函数有零点.

实数的取值范围为.

法2:函数的定义域为.

, .

,则.

时, ; 当时, .

所以函数上单调递增, 在上单调递减.

时, 函数取得最大值.

因而函数有零点, 则.

所以实数的取值范围为.

() 要证明当, ,

即证明当, , .

, .

, ;, .

所以函数上单调递减, 上单调递增.

, .

于是,,

, .

, ;, .

所以函数上单调递增, 上单调递减.

, .

于是, ,

显然, 不等式中的等号不能同时成立.

故当, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年1月1日,作为贵阳市打造“千园之城”27个示范性公园之一的泉湖公园正式开园.元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放.现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:

(1)根据条件完成下列

列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?

愿意

不愿意

总计

男生

女生

总计

(2)水上挑战项目共有两关,主办方规定:挑战过程依次进行,每一关都有两次机会挑战,通过第一关后才有资格参与第二关的挑战,若甲参加每一关的每一次挑战通过的概率均为

,记甲通过的关数为

,求

的分布列和数学期望.

参考公式与数据:

0.1

0.05

0.025

0.01

2.706

3.841

5.024

6.635

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】医用放射性物质原来质量a每年衰减的百分比相同,衰减一半时,所用时间是10年,根据需要,放射性物质至少要保留原来的,否则需要更换.已知到今年为止,剩余为原来的

(1)求每年衰减的百分比;

(2)到今年为止,该放射性物质衰减了多少年?

(3)今后至多还能用多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”.

(1)判断集合A={-1,1,2}是否为可倒数集;

(2)试写出一个含3个元素的可倒数集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的函数满足,且当时, ,则函数在区间[-7,1]上的零点个数为( )

A. 4 B. 6 C. 8 D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:极坐标与参数方程

在平面直角坐标系中,直线的参数方程为: (t为参数),它与曲线C: 相交于A,B两点.

(1)求|AB|的长;

(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆上每一点的纵坐标不变,横坐标变为原来的,得曲线C.

)写出C的参数方程;

)设直线l C的交点为P1P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1 P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

设函数

(1)证明:

(2)若不等式的解集是非空集,求的范围.

查看答案和解析>>

同步练习册答案