精英家教网 > 高中数学 > 题目详情
的值.
【答案】分析:先把真数和底数化为整数指数幂,再利用对数和指数的运算性质化简求值.
解答:解:由题意得,原式=+1+=+1+100=+101=104,
点评:本题考查了对数和指数的运算性质的应用,注意先把真数和底数化为整数指数幂再化简.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(x+
α
2
)cos(x+
α
2
)+2
3
cos2(x+
α
2
)-
3
为偶函数,且α∈[0,π]
(1)求α的值;
(2)若x为三角形ABC的一个内角,求满足f(x)=1的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=acos2ωx+
3
acosωxsinωx+b(0<ω<2,a≠0)
x=
π
6
是其函数图象的一条对称轴.
(Ⅰ)求ω的值;
(Ⅱ)若f(x)的定义域为[-
π
3
π
3
]
,值域为[-1,5],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈[0,
π
4
]
β∈[0,
π
4
]
且sin(2α+β)=3cos(α+β)sinα,4tan
α
2
=1-tan2
α
2
,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系中,以原点为圆心,单位长度1为半径的圆上有两点A(cosα,sinα),B(cosβ,sinβ).(0<α<β<π)
(1)试用A、B两点的坐标表示向量
OA
OB
的夹角β-α的余弦值;
(2)计算cos15°的值;
(3)若K
OA
+
OB
OA
-K
OB
的长度相等(其中K为非零实数),求β-α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)设Sn为数列{an}的前n项和为Sn=λan-1(λ,为常数,n=1,2,3…).
(1)若a3=
a
2
2
,求λ的值;
(2)是否存在实数λ,使得数列{an}是等差数列?若存在,求出λ的值;若不存在,说明理由;
(3)当λ=2量,若数列{cn}满足bn+1=an+bn(n=1,2,3,…),且b1=
2
3
,令cn=
an
(an+1)bn
,求数列{an}的前n项和Tn

查看答案和解析>>

同步练习册答案