精英家教网 > 高中数学 > 题目详情

【题目】已知,函数Fx=min{2|x1|x22ax+4a2}

其中min{pq}=

)求使得等式Fx=x22ax+4a2成立的x的取值范围;

)()求Fx)的最小值ma);

)求Fx)在区间[0,6]上的最大值Ma.

【答案】.()(.(

【解析】

试题()分别对两种情况讨论,进而可得使得等式成立的的取值范围;()()先求函数的最小值,再根据的定义可得的最小值;()分别对两种情况讨论的最大值,进而可得在区间上的最大值

试题解析:()由于,故

时,

时,

所以,使得等式成立的的取值范围为

)()设函数

所以,由的定义知,即

)当时,

时,

所以,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

)若是函数的一个极值点,求实数的值.

)设,当时,函数的图象恒不在直线的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面为正方形,且底面的平面与侧面的交线为且满足表示的面积.

1)证明: 平面

(2)当时,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)证明:当 时,

(2)若关于的方程有两个不相等的实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数是偶函数.

1)求的解析式;.

2)若不等式上恒成立,求n的取值范围;

3)若函数恰好有三个零点,求k的值及该函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面底面,侧棱,底面是直角梯形,其中.

1)求证:平面平面.

2)试问在棱上是否存在点,使得面,若存在,试指出点的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)时,求曲线在点处的切线的斜率;

(2)讨论函数的单调性;

(3)当函数有极值时,若对 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数函数为其中为常数.

(1)当的最大值

(2)若在区间为自然对数的底数)上的最大值为-3的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线上,且圆经过曲线轴的交点.

(1)求圆的方程;

(2)已知过坐标原点的直线与圆两点,若,求直线的方程.

查看答案和解析>>

同步练习册答案