精英家教网 > 高中数学 > 题目详情

【题目】ABC的内角ABC的对边分别为abc.已知asinA+B)=csin.

1)求A

2)求sinBsinC的取值范围;

3)若△ABC的面积为,周长为8,求a.

【答案】1A2)(0)(3a

【解析】

1)用诱导公式和正弦定理化边为角,然后再由二倍角公式变形后可求得

2)由(1)可得,把化为的函数,由三角函数恒等变换化为一个三角函数形式,结合正弦函数性质可得取值范围;

3)由三角形面积可求得,由周长及余弦定理得的三个等式,消去可解得

1)△ABC中,asinA+B)=csin

asinπC)=csin),

asinCccos,由正弦定理得sinAsinCsinCcos

sinAcos,即2sincoscos

A∈(0π),

cos0

2sin1,即sin

解得A

2)∵sinBsinCsinBsinBsinBcosBsin2Bsin2Bcos2Bsin2B

又∵B∈(0),

2B∈(),sin2B)∈(1]

sinBsinC∈(0.

3)△ABC的面积为,周长为8

bcsinAbc

bc4

a+b+c8

由余弦定理得:a2b2+c2bc

由①②③组成方程组,可得:

可得:(8a2a2+12

解得:a.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(Ⅰ)求椭圆方程;

(Ⅱ)设为椭圆右顶点,过椭圆的右焦点的直线与椭圆交于两点(异于),直线分别交直线两点. 求证:两点的纵坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,DE分别为ABBC的中点,点F在侧棱B1B上,且.

求证:(1)直线DE平面A1C1F

2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是一个半圆柱与多面体构成的几何体,平面与半圆柱的下底面共面,且 为弧上(不与重合)的动点.

(1)证明: 平面

(2)若四边形为正方形,且 ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形且侧棱垂直与底面的棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵与刍童的组合体中,

1)证明:直线平面

2)已知,且三棱锥A-A1B1D1的体积,求该组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设min{mn}表示mn二者中较小的一个,已知函数f(x)=x2+8x+14,g(x)=(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,则a的最大值为

A.-4B.-3C.-2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数).

1)讨论的单调性;

2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,长轴长为

)求椭圆的标准方程及离心率;

)过点的直线与椭圆交于两点,若点满足,求证:由点 构成的曲线关于直线对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数(0,+∞)上单调递增,函数g(x)2xk.

(1)m的值;

(2)x[12)时,记f(x)g(x)的值域分别为集合AB,设pxAqxB,若pq成立的必要条件,求实数k的取值范围.

查看答案和解析>>

同步练习册答案