精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数,不等式的解集有且只有一个元素,设数列的前项和.

1)求数列的通项公式;

2)若数列满足,求数列的前项和.

3)设各项均不为0的数列中,满足的正整数的个数称为这个数列的变号数,令,求数列的变号数.

【答案】123

【解析】

1)先根据不等式的解集有且只有一个元素再结合求出,进而代入求出;再根据前项和与通项之间的关系即可求出数列的通项公式; 2)先求出数列的通项,再结合裂项相消法求出数列的前项和

3)先根据条件求出数列的通项,再通过作差求出数列的单调性,最后结合变号数的定义即可得到结论.

解:(1不等式地的解集有且只有一个元素,

,又,故

时,

时,

不满足

.

2

时,

.

也满足该式,故.

3

时,

故当时,

,当时,恒成立,

故数列的变号数为3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某届奥运会上,中国队以261826铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查结果只有“满意”和“不满意”两种,从被调查的学生中随机抽取了50人,具体的调查结果如表:

班号

一班

二班

三班

四班

五班

六班

频数

5

9

11

9

7

9

满意人数

4

7

8

5

6

6

(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;

(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为,求随机变量的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为检验两条生产线的优品率,现从两条生产线上各抽取件产品进行检测评分,用茎叶图的形式记录,并规定高于分为优品.件的评分记录如下,第件暂不公布.

1)求所抽取的生产线上的个产品的总分小于生产线上的第个产品的总分的概率;

2)已知生产线的第件产品的评分分别为.

①从生产线的件产品里面随机抽取件,设非优品的件数为,求的分布列和数学期望;

②以所抽取的样本优品率来估计生产线的优品率,从生产线上随机抽取件产品,记优品的件数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的三棱锥中,是边长为2的等边三角形,的中位线,为线段的中点.

1)证明:.

2)若二面角为直二面角,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形中, ,将沿折起,使得平面平面,如图.

(1)求证:

(2)若中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的零点个数;

2)若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,分别为线段的中点,为四棱锥的外接球的球心,点分别是直线上的动点,记直线所成角为,则当最小时,

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何学是数学家伯努瓦·曼得尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图甲所示的分形规律可得如图乙所示的一个树形图:记图乙中第行黑圈的个数为,则(1_______;(2______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,是等边三角形,四边形是等腰梯形,,平面平面.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案