【题目】随着经济的发展,个人收入的提高.自2018年10月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:
(1)假如小李某月的工资、薪金等所得税前收入总和不高于8000元,记表示总收入,y表示应纳的税,试写出调整前后y关于的函数表达式;
(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
先从收入在[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,求两个宣讲员不全是同一收入人群的概率;
(3)小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收入比调整前增加了多少?
【答案】(1)见解析;(2);(3)见解析
【解析】
(1)依照个人所得税税率表,调整前后的计算方法得到调整前后y关于的函数表达式;
(2)利用分层抽样明确各层所占人数,利用古典概型公式计算即可;
(3)按调整前起征点应纳个税为295元,调整后起征点应纳个税为75元,从而作出判断.
(1)调整前y关于x的表达式为
.
调整后y关于x的表达式为
,
(2)由频数分布表可知从[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,其中[3000,5000)中占3人,分别记为A,B,C,[5000,7000)中占4人,分别记为1,2,3,4,再从这7人中选2人的所有组合有:AB,AC,A1,A2,A3,A4,BC,B1,B2,B3,B4,C1,C2,C3,C4,12,13,14,23,24,34,共21种情况,
其中不在同一收入人群的有:Al,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,共12种,所以所求概率为.
(3)由于小李的工资、薪金等收入为7500元,
按调整前起征点应纳个税为1500×3%+2500×10%=295元;
按调整后起征点应纳个税为2500×3%=75元,
比较两个纳税方案可知,按调整后起征点应纳个税少交220元,
即个人的实际收入增加了220元,所以小李的实际收入增加了220元。
科目:高中数学 来源: 题型:
【题目】某校高一组织一次数学竞赛,选取50名学生成绩(百分制,均为整数),根据这50名学生的成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间为.
(1)求频率分布直方图中a的值;
(2)估计选取的50名学生在这次数学竞赛中的平均成绩;
(3)用分层抽样的方法在分数段为的学生成绩中抽取一个样本容量为5的样本,
再随机抽取2人的成绩,求恰有一人成绩在分数段内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).
(1)求这60天每天包裹数量的平均值和中位数;
(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?
(3)小明打算将四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过,求他支付的快递费为45元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两队参加听歌猜歌名游戏,每队人.随机播放一首歌曲, 参赛者开始抢答,每人只有一次抢答机会,答对者为本队赢得一分,答错得零分, 假设甲队中每人答对的概率均为,乙队中人答对的概率分别为,且各人回答正确与否相互之间没有影响.
(1)若比赛前随机从两队的个选手中抽取两名选手进行示范,求抽到的两名选手在同一个队的概率;
(2)用表示甲队的总得分,求随机变量的分布列和数学期望;
(3)求两队得分之和大于4的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点F(1,0),定直线,动点M到点F的距离与到直线l的距离相等.
(1)求动点M的轨迹方程;
(2)设点,过点F作一条斜率大于0的直线交轨迹M于A,B两点,分别连接PA,PB,若直线PA与直线PB不关于x轴对称,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱侧棱和底面垂直的棱柱中,平面侧面,,线段AC、上分别有一点E、F且满足,.
求证:;
求点E到直线的距离;
求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为支援边远地区教育事业的发展,现有5名师范大学毕业生主动要求赴西部某地区三所不同的学校去支教,每个学校至少去1人,甲、乙不能安排在同一所学校,则不同的安排方法有( )
A.180种B.150种C.90种D.114种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)在矩形ABCD中,AB=5,AD=2,点E在线段AB上,且BE=1,将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCDE,如图(2).
(1)求证:CE⊥平面A1DE;
(2)求证:A1D⊥A1C;
(3)线段A1C上是否存在一点F,使得BF∥平面A1DE?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com