精英家教网 > 高中数学 > 题目详情

【题目】如图,正三棱柱各条棱的长度均相等,的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是

A. 内总存在与平面平行的线段

B. 平面平面

C. 三棱锥的体积为定值

D. 可能为直角三角形

【答案】D

【解析】

A项用平行于平面ABC的平面与平面MDN相交,则交线与平面ABC平行

B项利用线面垂直的判定定理;

C项三棱锥与三棱锥体积相等,三棱锥的底面积是定值,高也是定值,则体积是定值;

D项用反证法说明三角形DMN不可能是直角三角形.

A项,用平行于平面ABC的平面截平面MND,则交线平行于平面ABC,故正确;

B项,如图:

M、N分别在BB1、CC1上运动时,若满足BM=CN,则线段MN必过正方形BCC1B1的中心O,DO垂直于平面BCC1B1可得平面平面,故正确;

C,M、N分别在BB1、CC1上运动时,△A1DM的面积不变,N到平面A1DM的距离不变,所以棱锥N-A1DM的体积不变,即三棱锥A1-DMN的体积为定值,故正确

D,若△DMN为直角三角形,则必是以∠MDN为直角的直角三角形,MN的最大值为BC1,而此时DM,DN的长大于BB1,所以△DMN不可能为直角三角形,故错误.

故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为元,当用水超过4吨时,超过部分每吨为元,每月甲、乙两户共交水费元,已知甲、乙两户该月用水量分别为.

1)求关于的函数关系式;

2)若甲、乙两户该月共交水费元,分别求出甲、乙两户该月的用水量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司(为企业服务)准备在两种员工付酬方式中选择一种现邀请甲、乙两人试行10天两种方案如下:甲无保底工资送出50件以内(含50件)每件支付3元,超出50件的部分每件支付5元;乙每天保底工资50元,且每送出一件再支付2元分别记录其10天的件数得到如图茎叶图,若将频率视作概率,回答以下问题:

1)记甲的日工资额为(单位:元),求的分布列和数学期望;

2)如果仅从日工资额的角度考虑请利用所学的统计学知识为快递公司在两种付酬方式中作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中a为常数.

,求a的值;

时,关于x的不等式恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 命题“若,则”的逆否命题为“若,则

B. 若命题 ”,则命题的否定为“

C. ”是“”的充分不必要条件

D. ”是“直线与直线互为垂直”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,,数列的前项和满足.

1)求的值,猜测的通项公式,并证明之.

2)求数列的通项公式;

3)设.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的圆心在直线上,与直线相切,截直线所得的弦长为6.

1)求圆M的方程;

2)过点的两条成角的直线分别交圆MACBD,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中e为自然对数的底数,mn为常数),函数定义为:对每一个给定的实数x

1)当mn满足什么条件时,对所有的实数x恒成立;

2)设ab是两个实数,满足m时,求函数在区间的上的单调增区间的长度之和(用含ab的式子表示)(闭区间的长度定义为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD为直角梯形,AD//BC,且,BCDC,BAD=60°,平面PAD底面ABCD,E为AD的中点,PAD为等边三角形,M是棱PC上的一点,设(M与C不重合).

1)求证:CDDP;

(2)若PA平面BME,求k的值;

3)若二面角M﹣BE﹣A的平面角为150°,求k的值.

查看答案和解析>>

同步练习册答案