·ÖÎö £¨¢ñ£©ÍƵ¼³öFD¡ÍEF£¬FD¡ÍAF£¬ÒÔFΪ×ø±êԵ㣬·Ö±ðÒÔFE£¬FD£¬FAËùÔÚÖ±ÏßΪx£¬y£¬zÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÀûÓÃÏòÁ¿·¨ÄÜÇó³öÏ߶ÎADÉÏ´æÔÚµãP£¨0£¬$\frac{3}{2}£¬\frac{1}{5}$£©£¬$\overrightarrow{AP}=\frac{3}{2}\overrightarrow{PD}$£¬Ê¹µÃCP¡ÎƽÃæABEF£®
£¨¢ò£©ÉèBE=x£¬ÔòAF=x£¨0£¼x¡Ü2£©£¬FD=3-x£¬ÍƵ¼³öµ±x=$\frac{3}{2}$ʱ£¬VA-CDFÓÐ×î´óÖµ£¬ÇÒ×î´óֵΪ$\frac{3}{8}$£¬Çó³ö´ËʱƽÃæAECµÄÒ»¸ö·¨ÏòÁ¿ºÍƽÃæACFµÄÒ»¸ö·¨ÏòÁ¿£¬ÀûÓÃÏòÁ¿·¨ÄÜÇó³ö¶þÃæ½ÇE-AC-FµÄÓàÏÒÖµ£®
½â´ð ½â£º£¨¢ñ£©¡ßƽÃæABEF¡ÍƽÃæEFDC£¬Æ½ÃæABEF¡ÉƽÃæEFDC=EF£¬
FD¡ÍEF£¬
¡àFD¡ÍƽÃæABEF£¬ÓÖAF?ƽÃæABEF£¬
¡àFD¡ÍAF£¬
ÔÚÕÛÆð¹ý³ÌÖУ¬AF¡ÍEF£¬Í¬Ê±FD¡ÉEF=F£¬
¡àAF¡ÍƽÃæEFDC£¬
ÒÔFΪ×ø±êԵ㣬·Ö±ðÒÔFE£¬FD£¬FAËùÔÚÖ±ÏßΪx£¬y£¬zÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬
µ±BE=$\frac{1}{2}$ʱ£¬F£¨0£¬0£¬0£©£¬A£¨0£¬0£¬$\frac{1}{2}$£©£¬D£¨0£¬$\frac{5}{2}$£¬0£©£¬C£¨1£¬$\frac{3}{2}$£¬0£©£¬
ƽÃæABEFµÄ·¨ÏòÁ¿$\overrightarrow{FD}$=£¨0£¬$\frac{5}{2}$£¬0£©£¬
¡ß$\overrightarrow{AP}$=$¦Ë\overrightarrow{PD}$£¬¡à$\overrightarrow{FP}$=$\frac{1}{1+¦Ë}\overrightarrow{FA}$+$\frac{¦Ë}{1+¦Ë}\overrightarrow{FD}$=$\frac{1}{1+¦Ë}£¨0£¬0£¬\frac{1}{2}£©+\frac{¦Ë}{1+¦Ë}£¨0£¬\frac{5}{2}£¬0£©$£¬
¡àP£¨0£¬$\frac{5¦Ë}{2+2¦Ë}$£¬$\frac{1}{2+2¦Ë}$£©£¬
¡à$\overrightarrow{CP}$=£¨-1£¬$\frac{2¦Ë-3}{2+2¦Ë}$£¬$\frac{1}{2+2¦Ë}$£©£¬
¡ßCP¡ÎƽÃæABEF£¬¡à$\overrightarrow{CP}•\overrightarrow{FD}$=$\frac{5£¨2¦Ë-3£©}{2£¨2+2¦Ë£©}$=0£¬
½âµÃ$¦Ë=\frac{3}{2}$£¬
¡àÏ߶ÎADÉϵãP£¨0£¬$\frac{3}{2}£¬\frac{1}{5}$£©£¬ÇÒ$\overrightarrow{AP}=\frac{3}{2}\overrightarrow{PD}$£¬Ê¹µÃCP¡ÎƽÃæABEF£®
£¨¢ò£©ÉèBE=x£¬ÔòAF=x£¨0£¼x¡Ü2£©£¬FD=3-x£¬
¡àVA-CDF=$\frac{1}{3}¡Á\frac{1}{2}¡Á1¡Áx¡Á£¨3-x£©$=$\frac{1}{6}x£¨3-x£©$=-$\frac{1}{6}$£¨x-$\frac{3}{2}$£©2+$\frac{3}{8}$£¬
¡àµ±x=$\frac{3}{2}$ʱ£¬VA-CDFÓÐ×î´óÖµ£¬ÇÒ×î´óֵΪ$\frac{3}{8}$£¬
¡àA£¨0£¬0£¬$\frac{3}{2}$£©£¬C£¨1£¬$\frac{1}{2}$£¬0£©£¬D£¨0£¬$\frac{3}{2}$£¬0£©£¬E£¨1£¬0£¬0£©£¬
¡à$\overrightarrow{AE}$=£¨1£¬0£¬-$\frac{3}{2}$£©£¬$\overrightarrow{AC}$=£¨1£¬$\frac{1}{2}$£¬-$\frac{3}{2}$£©£¬$\overrightarrow{FA}$=£¨0£¬0£¬$\frac{3}{2}$£©£¬$\overrightarrow{FC}$=£¨1£¬$\frac{1}{2}$£¬0£©£¬
ÉèƽÃæAECµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{m}$=£¨x£¬y£¬z£©£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AC}=2x+y-3z=0}\\{\overrightarrow{m}•\overrightarrow{AE}=2x-3z=0}\end{array}\right.$£¬È¡x=3£¬µÃ$\overrightarrow{m}$=£¨3£¬0£¬2£©£¬
ÉèƽÃæACFµÄÒ»¸ö·¨ÏòÁ¿$\overrightarrow{n}$=£¨a£¬b£¬c£©£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{FA}=\frac{3}{2}c=0}\\{\overrightarrow{n}•\overrightarrow{FC}=a+\frac{1}{2}b=0}\end{array}\right.$£¬È¡a=1£¬µÃ$\overrightarrow{n}$=£¨1£¬-2£¬0£©£¬
cos£¼$\overrightarrow{m}$£¬$\overrightarrow{n}$£¾=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3}{\sqrt{13}¡Á\sqrt{5}}$=$\frac{3\sqrt{65}}{65}$£®
¡à¶þÃæ½ÇE-AC-FµÄÓàÏÒֵΪ$\frac{3\sqrt{65}}{65}$£®
µãÆÀ ±¾Ì⿼²éÂú×ãÏßÃæƽÐеĵãÊÇ·ñ´æÔÚµÄÅжÏÓëÇ󷨣¬¿¼²é¶þÃæ½ÇµÄÓàÏÒÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏòÁ¿·¨µÄºÏÀíÔËÓã®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | y=¡À2x | B£® | y=¡À$\frac{1}{2}$x | C£® | y=¡À$\frac{\sqrt{5}}{2}$x | D£® | y=¡À$\sqrt{5}$x |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨-¡Þ£¬$\frac{1}{e}$£© | B£® | £¨0£¬$\frac{1}{e}$£© | C£® | £¨-¡Þ£¬e£© | D£® | £¨e£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨-2£¬2£© | B£® | £¨-¡Þ£¬-2£©¡È£¨2£¬+¡Þ£© | C£® | £¨2£¬+¡Þ£© | D£® | £¨-¡Þ£¬-2£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | [-1£¬5] | B£® | [-2£¬4] | C£® | [-1£¬1] | D£® | [-5£¬1] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com