精英家教网 > 高中数学 > 题目详情

【题目】(12分)如图,底面是正三角形的直三棱柱中,D是BC的中点,.

)求证:平面

)求的A1 到平面的距离.

【答案】参考解析,

【解析】

试题分析:需证明平面,只需要在平面上找到一条直线与平行,通过三角形的中位线可得以上结论.

需求点到面的距离,本题通过构建一个三棱锥,让其体积算两次即得到一个等式,即可取出结论.解法一通过三棱锥与三棱锥的体积相等,由体积公式即可求得结论;解法二由得到的线面平行转化为三棱锥与三棱锥体积相等,从而得到结论.

试题解析:(1)连接于O,连接OD,在中,O为中点,D为BC中点

3分

6分

(2)解法一:设点到平面的距离为h

中,

8分

过D作于H

为直棱柱

10分

解得 12分

解法二:由可知

到平面的距离等于点C到平面的距离 8分

10分

设点C到面的距离为h

解得 12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知动点到定点的距离与到定直线的距离之比为

(1)求动点的轨迹的方程;

(2)已知为定直线上一点.

①过点的垂线交轨迹于点不在轴上),求证:直线的斜率之积是定值;

②若点的坐标为,过点作动直线交轨迹于不同两点,线段上的点满足,求证:点恒在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,其前n项和为Sn , {bn}是等比数列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=anb1+an1b2+…+a1bn , n∈N* , 是否存在实数p,q,r,对于任意n∈N* , 都有Tn=pan+qbn+r,若存在求出p,q,r的值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x>0,y>0,且2x+8y﹣xy=0,求:
(1)xy的最小值;
(2)x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68),再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.

组号

分组

回答正确的人数

回答正确的人数占本组的比例

第1组

[18,28)

5

0.5

第2组

[28,38)

18

a

第3组

[38,48)

27

0.9

第4组

[48,58)

x

0.36

第5组

[58,68)

3

0.2


(1)分别求出a,x的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的增函数,且对于任意的x都有f(﹣x)+f(x)=0恒成立,如果实数a,b满足不等式组 ,那么a2+b2的取值范围是(
A.[9,49]
B.(17,49]
C.[9,41]
D.(17,41]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:函数f(x)=lg(ax2﹣x+ a)的定义域为R;q:a≥1.如果命题“p∨q为真,p∧q为假”,求实数a的取值范围.

查看答案和解析>>

同步练习册答案