精英家教网 > 高中数学 > 题目详情
(文)已知A={x|
1
2
≤x≤2}
,f(x)=x2+px+q和g(x)=x+
1
x
+1
是定义在A上的函数,当x、x0∈A时,有f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),则f(x)在A上的最大值是
4
4
分析:由已知很容易得到函数g(x)=x+
1
x
+1
在区间[
1
2
,2]上的最小值为g(1)=3,于是函数f(x)=x2+px+q也在x=1处取到最小值f(1),从而可得二次函数的对称轴为x=1,下面只需代入数值即可求解.
解答:解:∵当x、x0∈A时,有f(x)≥f(x0),g(x)≥g(x0),
∴f(x0),g(x0)分别为函数f(x),g(x)的最小值
x,x0∈[
1
2
,2]

g(x)=x+
1
x
+1≥2
x•
1
x
+1
=3即g(x0)=3,此时x0=1
∵f(x0)=g(x0),则f(x0)=f(1)=3
-
p
2
=1
1+p+q=3

∴p=-2,q=4
∴f(x)=x2-2x+4在[
1
2
,2]
上的最大值为f(2)=4
故答案为:4
点评:本题考查利用基本不等式求解函数在区间上最值的方法,考查二次函数的性质的应用;考查函数与方程,转化与化归等数学思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文)已知关于x的方程x2+mx+n+1=0的两根为x1,x2,且满足-1<x1<0<x2<1,则点(m,n)所表示的平面区域面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),若f(x)=
a
b
-|
a
+
b
|2

(I)求函数f(x)的单调减区间;   
(II)若x[-
π
3
π
4
],求函数f(x)的最大值和最小值.
(文)已知
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),若f(x)=
a
b

(Ⅰ)求函数f(x)的最小正周期;    
(Ⅱ)若x∈[-
π
3
π
4
],求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(文)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0>2,试用x0表示线段AB中点的横坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(文)已知A={x|
1
2
≤x≤2}
,f(x)=x2+px+q和g(x)=x+
1
x
+1
是定义在A上的函数,当x、x0∈A时,有f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),则f(x)在A上的最大值是______.

查看答案和解析>>

同步练习册答案