分析 由条件利用同角三角函数的基本关系,求得要求式子的值.
解答 解:(1)∵tanα=7,∴$\frac{sinα+cosα}{2sinα-cosα}$=$\frac{tanα+1}{2tanα-1}$=$\frac{8}{14-1}$=$\frac{8}{13}$.
(2)∵tanα=7,∴sin2α+sinαcosα+3cos2α=$\frac{{sin}^{2}α+sinαcosα+{3cos}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α+tanα+3}{{tan}^{2}α+1}$=$\frac{49+7+3}{49+1}$=$\frac{59}{50}$.
点评 本题主要考查同角三角函数的基本关系,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 奇函数 | B. | 偶函数 | C. | 非奇非偶函数 | D. | 无法判断奇偶性 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{3}{4}$) | B. | (0,$\frac{3}{4}$] | C. | (0,1) | D. | [1,$\frac{4}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2$\sqrt{2}$,2$\sqrt{3}$) | B. | (2,2$\sqrt{2}$) | C. | (2$\sqrt{2}$,4) | D. | (2,2$\sqrt{3}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com