精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正四棱锥P﹣ABCD中,侧棱PA与底面ABCD所成的角的正切值为

1)求侧面PAD与底面ABCD所成的二面角的大小;

2)若EPB的中点,求异面直线PDAE所成角的正切值;

3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.

【答案】1∠PMO=60°;(2;(3F为四等分点

【解析】试题分析:(1)取AD中点M,设PO⊥ABCD,连MOPM,则∠PMO为二面角的平面角,设AB=a,则可利用tan∠PAO表示出AOPO,进而根据求得tan∠PMO的值,则∠PMO可知.

2)连OEOE∥PD∠OEA为异面直线PDAE所成的角.根据AO⊥BOAO⊥PO判断出AO⊥平面PBD,进而可推断AO⊥OE,进而可知进而可知∠AEO为直线PDAE所成角,根据勾股定理求得PD,进而求得OE,则tan∠AEO可求得.

3)延长MOBCN,取PN中点G,连EGMG.先证出平面PMN和平面PBC垂直,再通过已知条件证出MG⊥平面PBC,取AM中点F,利用EG∥MF,推断出,可知EF∥MG.最后可推断出EF⊥平面PBC.即F为四等分点.

解:(1)取AD中点M,设PO⊥ABCD,连MOPM,则∠PMO为二面角的平面角,∠PAO为侧棱PA与底面ABCD所成的角,

PO=AOtan∠PAO=

∴∠PMO=60°

2)连OEOE∥PD∠OEA为异面直线PDAE所成的角.

3)延长MOBCN,取PN中点G,连EGMG

AM中点F∵EG∥MF∴

∴EF∥MG

∴EF⊥平面PBC

F为四等分点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如下(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).

(Ⅰ)根据茎叶图中的数据完成列联表,并判断能否有的把握认为孩子的幸福感强与是否是留守儿童有关?

(Ⅱ)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.

参考公式: ; 附表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R的奇函数满足,且时, ,下面四种说法①;②函数在[-6,-2]上是增函数;③函数关于直线对称;④若,则关于的方程在[-8,8]上所有根之和为-8,其中正确的序号__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,一直线过点

①若直线在两坐标轴上截距之和为12,求直线的方程;

②若直线 轴正半轴交于 两点,当面积为 时求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在多面体ABCDEF中,ABCD为正方形,EF平面ABCD,M为FC的中点,AB=2,EF到平面ABCD的距离为2,FC=2.

(1)证明:AF平面MBD;

(2)若EF=1,求VF﹣MBE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中实数

(Ⅰ)判断是否为函数的极值点,并说明理由;

(Ⅱ)若在区间上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线 的准线上,记的焦点为,过点且与轴垂直的直线与抛物线交于 两点,则线段的长为( )

A. 4 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为2的正方形, ,且 中点.

(Ⅰ)求证: 平面;  

求二面角的平面角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在中, 的中点为,且,点的延长线上,且.固定边,在平面内移动顶点,使得圆与边,边的延长线相切,并始终与的延长线相切于点,记顶点的轨迹为曲线.以所在直线为轴, 为坐标原点如图所示建立平面直角坐标系.

(Ⅰ)求曲线的方程;

(Ⅱ)设动直线交曲线两点,且以为直径的圆经过点,求面积的取值范围.

查看答案和解析>>

同步练习册答案