精英家教网 > 高中数学 > 题目详情

已知处都取得极值.
(Ⅰ) 求的值;
(Ⅱ)设函数,若对任意的,总存在,使得、,求实数的取值范围.

(Ⅰ);(Ⅱ).

解析试题分析:(Ⅰ)利用函数的极值点就是导数的零点可求;(Ⅱ)利用导数分析单调性,把恒成立问题转化为求最值.
试题解析:(Ⅰ)         2分
处都取得极值
, ∴ 解得:      4分
时,
所以函数处都取得极值  
         7分
(Ⅱ)由(Ⅰ)知:函数上递减,
          9分
又 函数图象的对称轴是
(1)当时:,依题意有 成立, ∴
(2)当时:
,即
解得:
又∵ ,∴
(3)当时:,∴ , 又 ,∴
综上:  
所以,实数的取值范围为           13分
考点:导数求极值,单调性

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数=,=,若曲线和曲线都过点P(0,2),且在点P处有相同的切线.
(Ⅰ)求,,,的值;
(Ⅱ)若≥-2时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(Ⅰ)求的单调递增区间;
(Ⅱ)若函数上只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(1)若,求函数的极值;
(2)若函数上单调递减,求实数的取值范围;
(3)在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的极值;
(Ⅱ)设函数,求函数的单调区间;
(Ⅲ)若在区间)上存在一点,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ) 若函数处的切线方程为,求实数的值.
(Ⅱ)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是自然对数的底数,).
(Ⅰ)求的单调区间、最大值;
(Ⅱ)讨论关于的方程根的个数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)当时,讨论的单调性;
(II)若时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

查看答案和解析>>

同步练习册答案