精英家教网 > 高中数学 > 题目详情
在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,BC⊥AC,EF∥AC,AB=
2
,EF=EC=1.
(1)求证:AF∥平面BDE;
(2)求证:DF⊥平面BEF;
(3)求二面角A-BF-E的余弦值.
分析:(1)利用线面平行的判定,证明AF∥EO即可;
(2)利用线面垂直的判定,证明BF⊥EF,BF⊥DF,即可证得BF⊥平面DEF;
(3)取BF中点M,BE中点N,连接AM、MN、AN,则∠AMN就是二面角A-BF-E的平面角,由此可求二面角A--BF--E的余弦值.
解答:(1)证明:设AC与BD交与点O.
∵EF∥AO,且EF=1,AO=
1
2
AC=1.
∴四边形AOEF为平行四边形,
∴AF∥EO,
∵EO?面BDE,AF?面BDE,∴AF∥面BDE.…(3分)
(2)证明:∵正方形ABCD和四边形ACEF所在的平面相互垂直,且CE⊥AC,∴CE⊥面ABCD,
连接FO,∵正方形ABCD的边长为
2
,∴AC=BD=2;
直角梯形ACEF中,FO∥EC,且FO=1,DF=BF=
2
,DE=BE=
3
,则BF⊥EF,
由BF=DF=
2
,BD=2可知BF⊥DF,
∵EF∩DF=F
∴DF⊥平面BEF;…(7分)
(3)解:取BF中点M,BE中点N,连接AM、MN、AN,
∵AB=BF=AF=
2
,∴AM⊥BF,
又∵MN∥EF,EF⊥BF,∴MN⊥BF,
∴∠AMN就是二面角A-BF-E的平面角.
AM=
3
2
AB=
6
2
,MN=
1
2
EF=
1
2

在Rt△APN中,可得AN2=AP2+NP2=
11
4

∴在△AMN中,可得cos∠AMN=
AM2+MN2-AN2
2AM•MN
=-
6
3
,…(12分)
点评:本题考查线面平行、线面垂直,考查面面角,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF∥AC,AB=
2
,EF=EC=1,
(1)求证:平面BEF⊥平面DEF;
(2)求二面角A-BF-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在如图所示的多面体中,底面△ABC是边长为2的正三角形,DA和EC均垂直于平面ABC,且DA=2,EC=1.
(Ⅰ)求点A到平面BDE的距离;
(Ⅱ)求二面角B-ED-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在如图所示的多面体中,已知正方形ABCD和
直角梯形BDEF所在的平面互相垂直,EF∥BD,
ED⊥BD,AD=
2
,EF=ED=1,点P为线段
EF上任意一点.
(Ⅰ)求证:CF⊥AP;
(Ⅱ)求二面角B-AF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•日照一模)在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(1)求证:BD⊥EG;
(2)求平面DEG与平面DEF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的多面体中,AA1∥BB1,CC1⊥AC,CC1⊥BC.
(1)求证:CC1⊥AB;
(2)求证:CC1∥AA1

查看答案和解析>>

同步练习册答案