精英家教网 > 高中数学 > 题目详情
复数z=(1+i)(1-i)在复平面内对应的点的坐标为(  )
A、(1,0)
B、(2,0)
C、(0,1)
D、(0,2)
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:由条件利用两个复数代数形式的乘法法则,虚数单位i的幂运算性质,化简z,可得复数z在复平面内对应的点的坐标.
解答: 解:由于复数z=(1+i)(1-i)=1-i2=2,故此复数对应点的坐标为(2,0),
故选:B.
点评:本题主要考查两个复数代数形式的乘法法则,虚数单位i的幂运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x+
m
x
,且f(1)=2;
(1)判断f(x)的奇偶性;
(2)判断f(x)在(1,+∞)上的增减性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线y=sin(2x+φ)过坐标原点,则φ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

采用系统抽样的方法,从个体为1001的总体中抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z2=8+6i,则z3-16z-
100
z
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题“?x∈R,x2+(a-1)x+1<0”是假命题,则实数a的取值范围是(  )
A、(1,4)
B、[-1,3]
C、[1,4]
D、(-∞,1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集为R,集合A={x|x2-2x>0},B={x|1<x<3},则A∩B=
 
,A∪B
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为R的函数f(x),若f(x)在(-∞,0)和(0,+∞)上均有零点,则称函数f(x)为“含界点函数”,则下列四个函数中,不是“含界点函数”的是(  )
A、f(x)=x2+bx-1(b∈R)
B、f(x)=2-|x-1|
C、f(x)=2x-x2
D、f(x)=x-sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<a≤1,函数f(x)=x+
a
x
,g(x)=x-lnx,若对任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,则a的取值范围为(  )
A、(0,1]
B、(0,e-2]
C、[e-2,1]
D、[1-
1
e
,1]

查看答案和解析>>

同步练习册答案