精英家教网 > 高中数学 > 题目详情

求函数的单调递减区间.

答案:
解析:

(2,+∞)


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的图象与x轴的交点中,相邻两个交点之间的距离为
π
2
,且图象上一个最低点为M(
3
,-2)

(1)求f(x)的解析式;
(2)用五点作图法做出f(x)的图象
(3)说明y=f(x)的图象是由y=sinx的图象经过怎样的变换得到?
(4)求函数的单调递减区间
(5)当x∈[
π
12
π
2
]
,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx•cosx-
3
acos2x+
3
2
a+b(a>0)

(1)求函数的单调递减区间;
(2)设x∈[0,
π
2
],f(x)的最小值是-2,最大值是
3
,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+3x-x3
(1)求函数的单调递减区间;
(2)求函数的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx•cosx-
3
acos2x+
3
2
a+b(a>0)
(1)化简函数的解析式将其写成f(x)=Asin(ωx+φ)+B的形式;
(2)求函数的单调递减区间及函数图象的对称中心;
(3)当x∈[0,
π
2
]时,f(x)的最小值是-2,最大值是
3
,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2cosx,1)
,向量
n
=(cosx,
3
sin2x)
函数f(x)=
m
n
+
2010
1+cot2x
+
2010
1+tan2x

(1)化简f(x)的解析式,并求函数的单调递减区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知f(A)=2012,b=1,△ABC的面积为
3
2
,求
1005(a+c)
sinA+sinC
的值.

查看答案和解析>>

同步练习册答案