精英家教网 > 高中数学 > 题目详情

【题目】设椭圆,定义椭圆C相关圆E:.若抛物线的焦点与椭圆C的右焦点重合,且椭圆C的短轴长与焦距相等.

1)求椭圆C及其相关圆E的方程;

2)过相关圆E上任意一点P作其切线l,若l 与椭圆交于A,B两点,求证:为定值(为坐标原点);

3)在(2)的条件下,求面积的取值范围.

【答案】1;(2)证明见解析;(3.

【解析】

1)由题设知,又,从而可得,得椭圆方程,及相关圆方程;

2)对直线斜率进行讨论,斜率不存在时,直接写出直线方程,求出坐标,得

斜率存在时,设直线方程为,与椭圆方程联立方程组,消元后得关于的二次方程,有韦达定理得,由直线与圆相切得关系,计算也可得,定值.

3)由于是“相关圆”半径,所以,结合韦达定理求得,并得到其范围,从而得面积的范围.

1)抛物线的焦点是,与椭圆的一个焦点重合,∴,又,所以

椭圆方程为,“相关圆”的方程为

2)当直线斜率不存在时,不妨设其方程为,则,可得

当直线斜率存在时,设其方程为,设,由

,即

由韦达定理得

因为直线与圆相切,所以,整理得

所以,所以,为定值.

3)由于,因此求面积的取值范围只要求弦长的取值范围.

当直线斜率不存在时,

当直线斜率存在时,

时,0

时,

,即,当且仅当时,

所以的取值范围是

面积的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示:湖面上甲、乙、丙三艘船沿着同一条直线航行,某一时刻,甲船在最前面的点处,乙船在中间点处,丙船在最后面的点处,且.一架无人机在空中的点处对它们进行数据测量,在同一时刻测得 .(船只与无人机的大小及其它因素忽略不计)

(1)求此时无人机到甲、丙两船的距离之比;

(2)若此时甲、乙两船相距100米,求无人机到丙船的距离.(精确到1米)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

1)求

2)求证:数列是等差数列,并求的通项公式;

3)设,若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.

若在图④中随机选取-点,则此点取自阴影部分的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】任意实数,定义,设函数,数列是公比大于0的等比数列,且,则____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足则称数列.

1)若数列,试写出的所有可能值;

2)若数列,且的最大值;

3)对任意给定的正整数是否存在数列使得?若存在,写出满足条件的一个数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),过点)的直线交于两点.

1)若,求证:是定值(是坐标原点);

2)若是确定的常数),求证:直线过定点,并求出此定点坐标;

3)若的斜率为1,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数的图象与函数的图象关于直线对称.

1)若存在,使等式成立,求实数m的最大值和最小值

2)若当时不等式恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区有800名学员参加交通法规考试,考试成绩的频率分布直方图如图所示,其中成绩分组区间是:,,,,,规定90分及以上为合格:

(1)求图中a的值;

(2)根据频率分布直方图估计该地区学员交通法规考试合格的概率;

(3)若三个人参加交通法规考试,估计这三个人至少有两人合格的概率.

查看答案和解析>>

同步练习册答案