精英家教网 > 高中数学 > 题目详情
7.在极坐标系中,曲线C的方程为$ρ=4(cosθ+sinθ)-\frac{6}{ρ}$,以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.
(1)求曲线C的参数方程;
(2)在直角坐标系中,点M(x,y)是曲线C上一动点,求x+y的最大值,并求此时点M的直角坐标.

分析 (1)先求出C的直角坐标方程,再求曲线C的参数方程;
(2)利用C的参数方程,结合三角函数知识,求x+y的最大值,并求此时点M的直角坐标.

解答 解:(1)由曲线C的方程为$ρ=4(cosθ+sinθ)-\frac{6}{ρ}$,得ρ2=4ρcosθ+4ρsinθ-6,
即x2+y2-4x-4y+6=0,即(x-2)2+(y-2)2=2.
即曲线C是以点为圆心(2,2),以$\sqrt{2}$为半径的圆,
则圆的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=2+\sqrt{2}sinθ}\end{array}\right.$(θ为参数).
(2)x+y=4+$\sqrt{2}$cosθ+$\sqrt{2}$sinθ=4+2sin(θ+$\frac{π}{4}$).
于是当θ=$\frac{π}{4}$时,(x+y)max=4+2=6,
此时$\left\{{\begin{array}{l}{x=2+\sqrt{2}cos\frac{π}{4}=3}\\{y=2+\sqrt{2}sin\frac{π}{4}=3}\end{array}}\right.$,即M(3,3).

点评 本题考查三种方程的互化,考查参数方程的运用,考查三角函数知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.给出下列说法,其中正确的个数是(  )
①命题“若α=$\frac{π}{6}$,则sinα=$\frac{1}{2}$”的否命题是假命题;
②命题p:?x0∈R,使sinx0>1,则¬p:?x∈R,sinx≤1;
③“φ=$\frac{π}{2}$+2kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件;
④命题p:“?x∈(0,$\frac{π}{2}$)”,使sinx+cosx=$\frac{1}{2}$”,命题q:“在△ABC中,若sinA>sinB,则A>B”,那么命题(¬p)∧q为真命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若实数x、y满足不等式组$\left\{\begin{array}{l}2x+y+2≥0\\ x+y+m≤0\\ y≥0\end{array}\right.$,且z=y-2x的最小值等于-2,则实数m的值等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,内角A、B、C的对边分别为a,b,c,若b,c,a成等比数列,且a=$\frac{1}{2}$b,则cosA=$\frac{5\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有800名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:
分组频数频率
50.5~60.560.08
60.5~70.512      0.16
70.5~80.5150.2              
80.5~90.5240.32
90.5~100.5180.24
合计751
(Ⅰ)填充频率分布表的空格(将答案直接填在答题卡的表格内);
(Ⅱ)补全频率分布直方图;
(Ⅲ)若成绩在80.5~90.5分的学生为二等奖,问获得二等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某商场为了了解某日旅游鞋的销售情况,抽取了部分顾客所购鞋的尺寸,将所得数据整理后,画出频率分布直方图如图所示.已知从左到右前3个小组的频率之比为1:2:3,第4小组与第5小组的频率分布如图所示,第2小组的频数为10,则第4小组顾客的人数是(  )
A.15B.20C.25D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等差数列{an}中,若a2+a4+a6=3,则a1+a3+a5+a7=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知各项均不为零的数列{an}满足an+12=anan+2,且32a8-a3=0,记Sn是数列{an}的前n项和,则$\frac{{S}_{6}}{{a}_{1}-{S}_{3}}$的值为(  )
A.-$\frac{21}{8}$B.$\frac{21}{8}$C.-9D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列关于圆锥曲线的命题:
①设A,B为两个定点,P为动点,若|PA|+|PB|=8,则动点P的轨迹为椭圆;
②设A,B为两个定点,P为动点,若|PA|=10-|PB|,且|AB|=8,则|PA|的最大值为9;
③设A,B为两个定点,P为动点,若|PA|-|PB|=6,则动点P的轨迹为双曲线;
④双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{10}$=1与椭圆$\frac{{x}^{2}}{30}$+$\frac{{y}^{2}}{4}$=1有相同的焦点.
其中真命题的序号是②④.

查看答案和解析>>

同步练习册答案