分析 (1)求出函数的导数,求得切线的斜率,解方程可得a=1,由导数大于0,可得增区间,由导数小于0,可得减区间;
(2)要证当x>1时,f(x)>$\frac{9+lnx}{a{x}^{2}+1}$(a>0),即证当x>1时,$\frac{9x}{a{x}^{2}+1}$>$\frac{9+lnx}{a{x}^{2}+1}$(a>0),即有当x>1时,9+lnx<9x.令g(x)=9+lnx-9x(x>1),求出导数,判断单调性,即可得证.
解答 解:(1)函数f(x)=$\frac{9x}{a{x}^{2}+1}$的导数为
f′(x)=$\frac{9(1-a{x}^{2})}{(a{x}^{2}+1)^{2}}$,
即有在点(2,f(2))处的切线的斜率为$\frac{9(1-4a)}{(1+4a)^{2}}$=-$\frac{27}{25}$,
解得a=$\frac{7}{12}$<$\frac{2}{3}$(舍去)或a=1,
即有f(x)=$\frac{9x}{1+{x}^{2}}$的导数为f′(x)=$\frac{9(1-{x}^{2})}{(1+{x}^{2})^{2}}$,
由f′(x)>0,可得-1<x<1,由f′(x)<0,可得x>1或x<-1.
则f(x)的增区间为(-1,1),减区间为(-∞,-1),(1,+∞);
(2)证明:要证当x>1时,f(x)>$\frac{9+lnx}{a{x}^{2}+1}$(a>0),
即证当x>1时,$\frac{9x}{a{x}^{2}+1}$>$\frac{9+lnx}{a{x}^{2}+1}$(a>0),
即有当x>1时,9+lnx<9x.
令g(x)=9+lnx-9x(x>1),
g′(x)=$\frac{1}{x}$-9<0,即有g(x)在(1,+∞)递减,
则g(x)<g(1)=0,即有当x>1时,9+lnx<9x.
故当x>1时,f(x)>$\frac{9+lnx}{a{x}^{2}+1}$.
点评 本题考查导数的运用:求切线的斜率和单调区间,考查不等式的证明,注意运用构造函数和求导判断单调性,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | (4,6) | B. | (-4,-6) | C. | (2,2) | D. | (-2,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 12 | B. | 20 | C. | 28 | D. | 36 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com