精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)当时,求曲线处的切线方程;

2)若函数在区间上有极值,求实数的取值范围.

【答案】(1);(2)

【解析】

1)代入,对求导,代入得到斜率,再由点斜式写出直线方程;(2)对求导,令,然后再求导得到,可得时,,所以函数上单调递增,再根据,按进行分类讨论,得到函数上存在唯一零点,从而得到若函数在区间上有极值,则

(1)当时,

故曲线处的切线方程为:,即.

(2)

,则

时,,所以函数上单调递增,

,故

①当时,上单调递增,无极值;

②当时,

,则

时,,函数上单调递增,

所以在上,恒成立,

所以

所以函数上存在唯一零点

所以上单调递减,在上单调递增,此时函数存在极小值.

综上,若函数在区间上有极值,则

故实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)若函数在区间上存在极值,求实数的取值范围;

(Ⅲ)设,对任意恒有,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,分别为的中点.

(1)证明:平面

(2)已知与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,过的直线交于两点,点的坐标为.

(1)当轴垂直时,求直线的方程;

(2)设为坐标原点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已定义,已知函数的定义域都是,则下列四个命题中为真命题的是_________.(写出所有真命题的序号)

都是奇函数,则函数为奇函数.

都是偶函数,则函数为偶函数.

都是增函数,则函数为增函数.

都是减函数,则函数为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园草坪上有一扇形小径(如图),扇形半径为,中心角为,甲由扇形中心出发沿以每秒2米的速度向快走,同时乙从出发,沿扇形弧以每秒米的速度向慢跑,记秒时甲、乙两人所在位置分别为,,通过计算,判断下列说法是否正确:

(1)当时,函数取最小值;

(2)函数在区间上是增函数;

(3)若最小,则

(4)上至少有两个零点;

其中正确的判断序号是______(把你认为正确的判断序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,且是函数的一个极值,求函数的最小值;

(Ⅱ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的长轴长为,点为椭圆上的三个点,为椭圆的右端点,过中心,且

1)求椭圆的标准方程;

2)设是椭圆上位于直线同侧的两个动点(异于),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点O,左右焦点分别为的椭圆的离心率为,焦距为AB是椭圆上两点.

1)若直线与以原点为圆心的圆相切,且,求此圆的方程;

2)动点P满足:,直线的斜率的乘积为,求动点P的轨迹方程.

查看答案和解析>>

同步练习册答案