精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2-5x+4≤0},集合B={x|x2-2ax+a+2≤0}.
(1)若B⊆A,求实数a的取值范围;
(2)若A⊆B,求实数a的取值范围.
考点:集合的包含关系判断及应用
专题:集合
分析:(1)设f(x)=x2-2ax+a+2,它的图象是一条开口向上的抛物线,B⊆A可知集合B为空集或解决是[1,4]的子区间,结合图象建立不等关系,解之即可.
(2)若A⊆B,则
f(1)≤0
f(4)≤0
,解得实数a的取值范围.
解答: 解:(1)A={x|x2-5x+4≤0}={x|1≤x≤4}.
设f(x)=x2-2ax+a+2,它的图象是一条开口向上的抛物线
①若B=ϕ,满足条件,此时△<0,即4a2-4(a+2)<0,
解得-1<a<2;
②若B≠ϕ,设抛物线与x轴交点的横坐标为x1,x2
且x1≤x2,欲使B⊆A,应有{x|x1≤x≤x2}⊆{x|1≤x≤4},
结合二次函数的图象,得
f(1)≥0
f(4)≥0
1≤-
-2a
2
≤4
△≥0

3-a≥0
18-7a≥0
1≤a≤4
4a2-4a+8≥0
解得2≤a≤
18
7

综上可知a的取值范围是(-1,
18
7
].
(2)若A⊆B,设f(x)=x2-2ax+a+2,它的图象是一条开口向上的抛物线
f(1)≤0
f(4)≤0

3-a≤0
18-7a≤0

解得a≥3.
综上可知a的取值范围是[3,+∞)
点评:本题主要考查了集合的包含关系判断及应用,以及二次函数的图象,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-alnx,(a∈R)
(1)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[e,e2]是否存在实数a,使得函数f(x)有最大值e,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

当x=
 
时,函数y=x2(2-x2)有最大值,值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
ex
+c(e=2.71828…,c∈R),求f(x)的单调区间及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x+y+2=0上点到原点的距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:x2+
y2
a
=1,直线l:kx-y-k=0,O为坐标原点.
(1)若该曲线的离心率为
3
2
,求该的曲线C的方程;
(2)当a=-1时,直线l过定点M且与曲线C相交于两点M,N,试问在曲线C上是否存在点Q使得
OM
+
ON
OQ
?若存在,求实数λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(2m+1,3),
b
=(2,m),且
a
b
反向,则|
a
+
b
|等于(  )
A、
2
B、
15
2
2
C、
15
2
D、
10
2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ex-k-lnx-k<0有解,则实数k的取值范围(  )
A、k>0B、0<k<1
C、k<0或k>1D、k>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某人在早上6:30-7:30之间把报纸送到你家,而你离开家去上学的时间在早上7:00-8:00之间,那么你离开家前能得到报纸的概率是(  )
A、
1
4
B、
3
4
C、
1
8
D、
7
8

查看答案和解析>>

同步练习册答案