精英家教网 > 高中数学 > 题目详情

【题目】为了了解学生考试时的紧张程度,现对100名同学进行评估,打分区间为,得到频率分布直方图如下,其中成等差数列,且.

(1)求的值;

(2)现采用分层抽样的方式从紧张度值在中共抽取5名同学,再从这5名同学中随机抽取2人,求至少有一名同学是紧张度值在的概率.

【答案】(1) (2) .

【解析】

(1)直接利用图中数据及成等差数列列方程组,解方程组即可。

(2)根据分层抽样,中抽2人记为中抽3人记为,可列出基本事件总数为10种,“至少有一名在的同学”事件包含7个基本事件,利用古典概型概率计算公式计算得解。

(1)由题可得:

解得.

2)根据分层抽样,中抽2人记为中抽3人记为

共有10种基本事件:

事件为:至少有一名在的同学,该事件包含7个基本事件,

所以至少有一名同学是紧张度值在的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】pf(x)在区间(1,+∞)上是减函数;q:若x1x2是方程x2ax20的两个实根,则不等式m25m3≥|x1x2|对任意实数a[1,1]恒成立.若p不正确,q正确,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,在四棱锥中,的中点。

(1)求证:

(2)线段上是否存在一点,满足?若存在,试求出二面角的余弦值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个表面被涂上红色的棱长是4cm的立方体,将其适当分割成棱长为1cm的小立方体.

1)共得到多少个棱长是1cm的小立方体?

2)三面是红色的小立方体有多少个?它们的表面积之和是多少?

3)两面是红色的小立方体有多少个?它们的表面积之和是多少?

4)一面是红色的小立方体有多少个?它们的表面积之和是多少?

5)六个面均没有颜色的小立方体有多少个?它们的表面积之和是多少?它们占有多少立方厘米的空间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左焦点左顶点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知是椭圆上的两点是椭圆上位于直线两侧的动点.若,试问直线的斜率是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民自来水收费标准如下:每户每月用水量不超过4吨时,每吨为2元;当用水量超4吨时,超过部分每吨为3元.八月甲、乙两用户共交水费元,已知甲、乙两用户月用水量分别为吨、吨.

(1)求关于的函数;

(2)若甲、乙两用户八月共交34元,分别求甲、乙两用户八月的用水量和水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从学生会宣传部6名成员(其中男生4人,女生2)中,任选3人参加某省举办的我看中国改革开放三十年演讲比赛活动.

(1)设所选3人中女生人数为ξ,求ξ的分布列;

(2)求男生甲或女生乙被选中的概率;

(3)男生甲被选中为事件A女生乙被选中为事件B,求P(B)P(B|A)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为原点,其半径与椭圆的左焦点和上顶点的连线线段长度相等.

(1)求圆的标准方程;

(2)过椭圆右焦点的动直线(其斜率不为0)交圆两点,试探究在轴正半轴上是否存在定点,使得直线的斜率之和为0?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=

(1)写出该函数的单调区间;

(2)若函数=-m恰有3个不同零点,求实数m的取值范围;

(3)若n2-2bn+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数n的取值范围.

查看答案和解析>>

同步练习册答案