精英家教网 > 高中数学 > 题目详情

【题目】下图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是26;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④102日到106日认购量的分散程度比成交量的分散程度更大.则上述判断错误的个数为(

A.4B.3C.2D.1

【答案】B

【解析】

将国庆七天认购量和成交量从小到大排列,即可判断①;计算成交量的平均值,可由成交量数据判断②;由图可判断③;计算认购量的平均值与方差,成交量的平均值与方差,对方差比较即可判断④.

国庆七天认购量从小到大依次为:91,100,105,107,112,223,276

成交量从小到大依次为:8,13,16,26,32,38,166

对于①,成交量的中为数为26,所以①正确;

对于②,成交量的平均值为,1天成交量超过平均值,所以②错误;

对于③,由图可知认购量与日期没有正相关性,所以③错误;

对于④, 102日到106日认购量的平均值为

方差为

102日到106日成交量的平均值为

方差为

所以由方差性质可知, 102日到106日认购量的分散程度比成交量的分散程度更小,所以④错误;

综上可知,错误的为②③④

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,平面平面

(1)证明:在线段上存在一点,使得平面

(2)若,在(1)的条件下,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m,n为两条不同的直线,为两个不同的平面,则下列命题中正确的有  

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面几何中,与三角形的三条边所在直线的距离相等的点有且只有四个.类似的:在立体几何中,与正四面体的六条棱所在直线的距离相等的点 ( )

A. 有且只有一个 B. 有且只有三个 C. 有且只有四个 D. 有且只有五个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过去大多数人采用储蓄的方式将钱储蓄起来,以保证自己生活的稳定,考虑到通货膨胀的压力,如果我们把所有的钱都用来储蓄,这并不是一种很好的方式,随着金融业的发展,普通人能够使用的投资理财工具也多了起来,为了研究某种理财工具的使用情况,现对年龄段的人员进行了调查研究,将各年龄段人数分成5组:,并整理得到频率分布直方图:

1)求图中的a值;

2)采用分层抽样的方法,从第二组、第三组、第四组中共抽取8人,则三个组中,各抽取多少人;

3)由频率分布直方图,求所有被调查人员的平均年龄.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在199319936688张卡片上,每张写上一个自然数,恰写了1,2,…,199319936688这199319936688个自然数.问能否把这些卡片分成三组,使得第二组卡片上写的数之总和比第一组卡片上写的数之总和大33,而第三组卡片上写的数之总和比第二组卡片上写的数之总和大102?

若能,请给出一种分组方法.若不能,请你说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)设,当时,求函数的定义域,判断并证明函数的奇偶性;

2)是否存在实数,使函数上单调递减,且最小值为1?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的最大值和最小值;

2)求实数的取值范围,使在区间上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线CO为坐标原点,FC的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.OMN为直角三角形,则|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

同步练习册答案