精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)﹣g(x)=ex , 则有(
A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)

【答案】D
【解析】解答:用﹣x代换x得:f(﹣x)﹣g(﹣x)=ex , 即f(x)+g(x)=﹣ex , 又∵f(x)﹣g(x)=ex
∴解得:
故f(x)单调递增,又f(0)=0,g(0)=﹣1,有g(0)<f(2)<f(3)
故选D
分析:因为函数f(x),g(x)分别是R上的奇函数、偶函数,所以f(﹣x)=﹣f(x),g(﹣x)=g(x).用﹣x代换x得:f(﹣x)﹣g(﹣x)=﹣f(x)﹣g(x)=ex , 又由f(x)﹣g(x)=ex联立方程组,可求出f(x),g(x)的解析式进而得到答案.
【考点精析】解答此题的关键在于理解函数奇偶性的性质的相关知识,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】化简或求值:
(1)(2 0+22×(2 ﹣(
(2)2(lg 2+lg lg5+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】多面体 在平面上的射影是线段的中点.

(1)求证:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+b满足f(1)=0,且在x=2时函数取得极值.
(1)求a,b的值;
(2)求函数f(x)的单调区间;
(3)求函数f(x)在区间[0,t](t>0)上的最大值g(t)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数有三个不同的零点,则实数的取值范围是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线两点, 的中点,过轴的垂线交点.

(1)证明:抛物线点处的切线与平行;

(2)是否存在实数,使以为直径的圆经过点?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是偶函数,而y=f(x+1)是奇函数,且对任意0≤x≤1,都有f(x)≥0,f(x)是增函数,则a=f(2010),b=f( ),c=﹣f( )的大小关系是(
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数)是定义域为的奇函数.

(1)若,试求不等式的解集;

(2)若,且,求上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对甲、乙的学习成绩进行抽样分析,各抽五门功课,得到的观测值如表:

60

80

70

90

70

80

60

70

80

75

问:甲、乙谁的平均成绩较好?谁的各门功课发展较平衡?(
A.甲的平均成绩较好,乙的各门功课发展较平衡
B.甲的平均成绩较好,甲的各门功课发展较平衡
C.乙的平均成绩较好,甲的各门功课发展较平衡
D.乙的平均成绩较好,乙的各门功课发展较平衡

查看答案和解析>>

同步练习册答案