精英家教网 > 高中数学 > 题目详情

【题目】我国有一道古典数学名著——两鼠穿墙:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”题意是:“有两只老鼠从墙的两边打洞穿墙(连线与墙面垂直),大老鼠第一天进一尺,以后每天加倍,小老鼠第一天也进一尺,以后每天减半,那么两鼠第几天能见面.”假设墙厚16尺,如图是源于该题思想的一个程序框图,则输出的( )

A. 3 B. 4 C. 5 D. 6

【答案】B

【解析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

程序执行第一次后,,执行第二次后,,执行第3次后, ,执行第4次后,,跳出循环,输出,程序结束,故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足,(N*).

(Ⅰ)写出的值;

(Ⅱ)设,求的通项公式;

(Ⅲ)记数列的前项和为,求数列的前项和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图所示,△ABC为正三角形,CE⊥平面ABCBDCE,且CEAC=2BDMAE的中点.

(1)求证:DEDA

(2)求证:平面BDM⊥平面ECA

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图在三棱锥中, 分别为棱的中点,已知

求证(1)直线平面

(2)平面 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

求函数的单调区间和极值;

,且是曲线上的任意两点,若对任意的,直线AB的斜率恒大于常数m,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC的外接圆⊙O的半径为5CE垂直于⊙O所在的平面,BD∥CECE4BC6,且BD1.

1)求证:平面AEC⊥平面BCED

2)试问线段DE上是否存在点M,使得直线AM与平面ACE所成角的正弦值为?若存在,确定点M的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工艺公司要对某种工艺品深加工,已知每个工艺品进价为20元,每个的加工费为n元,销售单价为x.根据市场调查,须有,同时日销售量m(单位:个)与成正比.当每个工艺品的销售单价为29元时,日销售量为1000.

1)写出日销售利润y(单位:元)与x的函数关系式;

2)当每个工艺品的加工费用为5元时,要使该公司的日销售利润为100万元,试确定销售单价x的值.(提示:函数的图象在上有且只有一个公共点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)下列判断错误的是( )

A.的最小值为2B.{菱形}{矩形}={正方形}

C.方程组的解集为D.如果,那么

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是素数,证明存在0,1,2,…,的一个排列(,…,),使得,…,.被除的余数各不相同.

查看答案和解析>>

同步练习册答案