精英家教网 > 高中数学 > 题目详情

设y1=数学公式,y2=数学公式,y3=数学公式,则


  1. A.
    y3<y2<y1
  2. B.
    y1<y2<y3
  3. C.
    y2<y3<y1
  4. D.
    y1<y3<y2
B
分析:构造函数y=0.5x,利用两个函数的单调性进行比较即可.
解答:因为y=0.5x为减函数,而,所以y2<y3,
又因为是R上的增函数,且0.4<0.5,所以y1<y2,所以y1<y2<y3
故选B
点评:本题考查比较大小知识、指数函数和幂函数的单调性等知识,属基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下面给出的四个命题中:
①对任意的n∈N*,点Pn(n,an)都在直线y=2x+1上是数列an为等差数列的充分不必要条件;
②“m=-2”是直线(m+2)x+my+1=0与“直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③设圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)与坐标轴有4个交点A(x1,0),B(x2,0),C(0,y1),D(0,y2),则有x1x2-y1y2=0;
④将函数y=cos2x的图象向右平移
π
3
个单位,得到函数y=sin(2x-
π
6
)
的图象.
其中是真命题的有
 
(将你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,xn和y1,y2,…,yn,由此得到V个点(x,y)(i-1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(x1,y1),B(x2,y2)(x1x2≠0)是抛物线y2=2px(p>0)上的两个动点,O是坐标原点,且OA⊥OB,设圆C的方程为x2+y2-(x1+x2)x-(y1+y2)y=0.
(1)证明:圆C是以线段AB为直径的圆;
(2)当圆心C到直线x-2y=0的距离的最小值为
5
时,求P的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在[x1,x2]上的函数y=f(x)的图象为C,C的端点为点A、B,M是C上的任意一点,向量=(x1,y1),=(x2,y2),=(x,y),若x=λx1+(1-λ)x2,记向量+(1-λ).现在定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指||≤k恒成立,其中k是一个人为确定的正数.

(1)证明0≤λ≤1;

(2)请你给出一个标准k的范围,使得[0,1]上的函数y=x2与y=x3中有且只有一个可在标准k下线性近似.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义在[x1,x2]上的函数y=f(x)的图象为C,C的端点为点A、B,M是C上的任意一点,向量=(x1,y1),=(x2,y2),=(x,y),若x=λx1+(1-λ)x2,记向量+(1-λ).现在定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指||≤k恒成立,其中k是一个人为确定的正数.

(1)证明0≤λ≤1;

(2)请你给出一个标准k的范围,使得[0,1]上的函数y=x2与y=x3中有且只有一个可在标准k下线性近似.

查看答案和解析>>

同步练习册答案