精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: =1(a>b>0)的左、右焦点分别为F1 , F2 , 且F1 , F2与短轴的一个顶点Q构成一个等腰直角三角形,点P( )在椭圆C上.
(I)求椭圆C的标准方程;
(Ⅱ)过F2作互相垂直的两直线AB,CD分别交椭圆于点A,B,C,D,且M,N分别是弦AB,CD的中点,求△MNF2面积的最大值.

【答案】解:(Ⅰ)∵椭圆 =1(a>b>0)经过点P( ),
且F1 , F2与短轴的一个顶点Q构成一个等腰直角三角形,
,解得a2=2,b2=1,
∴椭圆方程为
(Ⅱ)设直线AB的方程为x=my+1,m≠0,
则直线CD的方程为x=﹣ y+1,
联立 ,消去x得(m2+2)y2+2my﹣1=0,
设A(x1 , y1),B(x2 , y2),则y1+y2=﹣ ,y1y2=
∴x1+x2=(my1+1)+(my2+1)
=m(y1+y2)+2=
由中点坐标公式得M( ),
将M的坐标中的m用﹣ 代换,得CD的中点N( ),
kMN=
直线MN的方程为y+ = (x﹣ ),
即为y=
,可得x= ,即有y=0,
则直线MN过定点H,且为H( ,0),
∴△F2MN面积为S= |F2H||yM﹣yN|
= (1﹣ )| |= | |= | |,
令m+ =t(t≥2),由于2t+ 的导数为2﹣ ,且大于0,即有在[2,+∞)递增.
即有S= = 在[2,+∞)递减,
∴当t=2,即m=1时,S取得最大值,为
则△MNF2面积的最大值为
【解析】(Ⅰ)由已知得到关于a,b,c的方程组,求解方程组可得a,b,进而得到椭圆方程;(Ⅱ)设直线AB的方程为x=my+1,m≠0,则直线CD的方程为x=﹣ y+1,分别代入椭圆方程,由于韦达定理和中点坐标公式可得中点M,N的坐标,求得斜率和直线方程,即可得到定点H,则△MNF2面积为S= |F2H||yM﹣yN|,化简整理,再令m+ =t(t≥2),由于函数的单调性,即可得到最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式ax2+2x+b>0(a≠0)的解集为 ,且a>b,则 的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知直二面角α﹣AB﹣β,P∈α,Q∈β,PQ与平面α,β所成的角都为30°,PQ=4,PC⊥AB,C为垂足,QD⊥AB,D为垂足,求:
(1)直线PQ与CD所成角的大小
(2)四面体PCDQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)

(1)若,讨论的单调性;

(2)若对任意的,都存在使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,曲线c1:y2=2px(p>0)与曲线c2:(x﹣6)2+y2=36只有三个公共点O,M,N,其中O为坐标原点,且 =0.
(1)求曲线c1的方程;
(2)过定点M(3,2)的直线l与曲线c1交于A,B两点,若点M是线段AB的中点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形OABC中,点C(1,3).
(1)求OC所在直线的斜率;
(2)过点C作CD⊥AB于点D,求CD所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,O、E分别是BD、BC的中点,CA=CB=CD=BD=2,AB=AD=
(Ⅰ)求证:AO⊥平面BCD;
(Ⅱ)求异面直线AB与CD所成角的余弦;
(Ⅲ)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,数列{an}满足
(1)求证:数列{ }是等差数列;
(2)求数列{an}的通项公式;
(3)记Sn=a1a2+a2a3+…+anan+1 , 求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.经过空间内的三个点有且只有一个平面
B.如果直线l上有一个点不在平面α内,那么直线上所有点都不在平面α内
C.四棱锥的四个侧面可能都是直角三角形
D.用一个平面截棱锥,得到的几何体一定是一个棱锥和一个棱台

查看答案和解析>>

同步练习册答案