精英家教网 > 高中数学 > 题目详情

若定义在区间D上的函数y=f(x)对于区间D上任意x1,x2都有不等式数学公式成立,则称函数y=f(x)在区间D上的凸函数.
(I)证明:定义在R上的二次函数f(x)=ax2+bx+c(a<0)是凸函数;
(II)对(I)的函数y=f(x),若|f(1)|≤1,|f(2)|≤2,|f(3)|≤3,求|f(4)|取得最大值时函数y=f(x)的解析式;
(III)定义在R上的任意凸函数y=f(x),当q,p,m,n∈N*且p<m<n<q,p+q=m+n,证明:f(p)+f(q)≤f(m)+f(n).

解:(I)证明:对任意x1,x2∈R,当a<0,
有[f(x1)+f(x2)]-2f()=ax12+bx1+c+ax22+bx2+c-2[a(2+b()+c]=ax12+ax22-a(x12+x22+2x1x2)=a(x1-x22 (3分)
∴当a<0时,f(x1)+f(x2)≤2f(),即≤f(
当a<0时,函数f(x)是凸函数.
(2)因为|f(1)|≤1,|f(2)|≤2,|f(3)|≤3,
所以
又f(4)=16a+4b+c
设16a+4b+c=x(a+b+c)+y(4a+2b+c)+z(9a+3b+c)
所以
解得x=1,y=-3,z=3
所以f(4)=f(1)-3f(2)+3f(3)
所以-16≤f(4)≤16
所以f(4)的最大值为16
取得
解得a=4,b=-15,c=12,
(III)因为p<m<n<q,p+q=m+n,y=f(x)为凸函数,
所以f(p)+f(q)≤2f(p+q)=2f(m+n)
f(m)+f(n))≤2f(m+n)
因为y=f(x)为凸函数,
所以f(p)+f(q)≤f(m)+f(n).
分析:(I)利用凸函数的定义,验证函数f(x)=ax2+bx+c(a<0)满足不等式成立.
(II)根据已知条件得到a,b,c满足的不等式,将f(4)用f(1),f(2),f(3)表示,从而得到f(4)取最大值时a,b,d 值.
(III)结合凸函数的定义以及梯形的中位线公式得到要证的不等式.
点评:本题是一定新定义的题,考查了不等式的性质及二次函数的性质、待定系数法求函数的定义域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
2
x
+alnx(x>0)

(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+
2
x
+alnx(x>0)

(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省高考猜押题卷文科数学(二)解析版 题型:解答题

(本小题满分14分)

已知函数

(Ⅰ)请研究函数的单调性;

(Ⅱ)若函数有两个零点,求实数的取值范围;

(Ⅲ)若定义在区间D上的函数对于区间D上的任意两个值x1、x2总有以下不等式成立,则称函数为区间D上的“凹函数”.若函

 

的最小值为,试判断函数是否为“凹函数”,并对你的判断加以证明.

 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年广东省韶关市田家炳中学、乳源高级中学联考高二(下)期中数学试卷(理科)(解析版) 题型:解答题

已知函数
(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年广东省华南师大附中高三综合测试数学试卷3(理科)(解析版) 题型:解答题

已知函数
(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

同步练习册答案