精英家教网 > 高中数学 > 题目详情
已知m=,n=(cosωx-sinωx,2sinωx),其中ω>0,若函数f(x)=m•n,且f(x)的对称中心到f(x)对称轴的最近距离不小于
(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,且a=1,b+c=2,当ω取最大值时,f(A)=1,求△ABC的面积.
【答案】分析:(Ⅰ)先将函数化简得:f(x)=,由于函数f(x)的周期,由题意知,即,又ω>0,从而可确定ω的取值范围;
(Ⅱ)由(I)知ω的最大值为1,所以.利用f(A)=1,可求.由余弦定理可知:,∴b2+c2-bc=1,又b+c=2,从而可求得:,故可求△ABC的面积.
解答:解:(Ⅰ)f(x)=m•n==(3分)∵ω>0,∴函数f(x)的周期,由题意知,即
又ω>0,∴0<ω≤1.故ω的取值范围是{ω|0<ω≤1}(6分)
(Ⅱ)由(I)知ω的最大值为1,∴
∵f(A)=1,∴.而,∴,∴. (9分)
由余弦定理可知:,∴b2+c2-bc=1,又b+c=2.联立解得:
.(13分)
点评:本题主要考查例用辅助角公式转化成正弦型函数,考查余弦定理的运用及三角形的面积公式,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心在原点O,焦点在x轴上,点A(-2
3
,0)
是其左顶点,点C在椭圆上,且
AC
CO
=0
|
AC
|=|
CO
|

(Ⅰ)求椭圆的方程;
(Ⅱ)若平行于CO的直线l和椭圆交于M,N两个不同点,求△CMN面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知向量
m
=(2a-c,b)与向量
n
=(cosB,-cosC)互相垂直.
(1)求角B的大小;
(2)求函数y=2sin2C+cos(B-2C)的值域;
(3)若AB边上的中线CO=2,动点P满足
AP
=sin2θ•
AO
+cos2θ•
AC
(θ∈R)
,求(
PA
+
PB
)•
PC
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,则n=__________.ww w.k s5 u.co m

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,则n=__________.ww w.k s5 u.co m

查看答案和解析>>

同步练习册答案