精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=(m+2cos2x)•cos(2x+θ)为奇函数,且f($\frac{π}{4}$)=0,其中m∈R,θ∈(0,π)
(Ⅰ)求函数f(x)的图象的对称中心和单调递增区间
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且f($\frac{C}{2}$+$\frac{π}{24}$)=-$\frac{1}{2}$,c=1,ab=2$\sqrt{3}$,求△ABC的周长.

分析 (Ⅰ)把x=$\frac{π}{4}$代入函数解析式可求得m的值,进而根据函数为奇函数推断出f(0)=0,进而求得cosθ,则θ的值可得函数解析式,进而可得函数f(x)的图象的对称中心和单调递增区间
(Ⅱ)由f($\frac{C}{2}$+$\frac{π}{24}$)=-$\frac{1}{2}$可得C角,结合余弦定理及c=1,ab=2$\sqrt{3}$,可得△ABC的周长.

解答 解:(Ⅰ)f($\frac{π}{4}$)=-(m+1)sinθ=0,
∵θ∈(0,π).
∴sinθ≠0,
∴m+1=0,即m=-1,
∵f(x)为奇函数,
∴f(0)=(m+2)cosθ=0,
∴cosθ=0,θ=$\frac{π}{2}$.
故f(x)=(-1+2cos2x)cos(2x+$\frac{π}{2}$)=cos2x•(-sin2x)=-$\frac{1}{2}$sin4x,
由4x=kπ,k∈Z得:x=$\frac{1}{4}$kπ,k∈Z,
故函数f(x)的图象的对称中心坐标为:($\frac{1}{4}$kπ,0),k∈Z,
由4x∈[$\frac{π}{2}$+2kπ,$\frac{3π}{2}$+2kπ],k∈Z得:x∈[$\frac{π}{8}$+$\frac{1}{2}$kπ,$\frac{3π}{8}$+$\frac{1}{2}$kπ],k∈Z,
即函数f(x)的单调递增区间为[$\frac{π}{8}$+$\frac{1}{2}$kπ,$\frac{3π}{8}$+$\frac{1}{2}$kπ],k∈Z,
(Ⅱ)∵f($\frac{C}{2}$+$\frac{π}{24}$)=-$\frac{1}{2}$sin(2C+$\frac{π}{6}$)-$\frac{1}{2}$,C为三角形内角,
故C=$\frac{π}{6}$,
∴c2=a2+b2-2abcosC=${a}^{2}+{b}^{2}-\sqrt{3}ab$=${(a+b)}^{2}-(2+\sqrt{3})ab$,
∵c=1,ab=2$\sqrt{3}$,
∴a+b=2+$\sqrt{3}$,
∴a+b+c=3+$\sqrt{3}$,
即△ABC的周长为3+$\sqrt{3}$.

点评 本题主要考查了同角三角函数关系,三角函数恒等变换的应用,函数奇偶性问题.综合运用了所学知识解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,在△ABC中,$\overrightarrow{GA}$+$\overrightarrow{GB}$+$\overrightarrow{GC}$=$\overrightarrow{0}$,$\overrightarrow{CA}$=$\overrightarrow{a}$,$\overrightarrow{CB}$=$\overrightarrow{b}$,已知点P,Q分别为线段CA,CB(不含端点)上的动点,PQ与CG交于H,且H为线段CG中点,若$\overrightarrow{CP}$=m$\overrightarrow{a}$,$\overrightarrow{CQ}$=n$\overrightarrow{b}$,则$\frac{1}{m}$+$\frac{1}{n}$=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.平面向量$\overrightarrow{OA}$⊥$\overrightarrow{AB}$,|$\overrightarrow{OA}$|=2,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数既是奇函数又是偶函数的是(  )
A.$f(x)=x+\frac{1}{x}$B.$f(x)=\frac{1}{x^2}$
C.$f(x)=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$D.$f(x)=\left\{\begin{array}{l}\frac{1}{2}{x^2}+1,x>0\\-\frac{1}{2}{x^2}-1,x<0\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)在(0,+∞)内可导,且f(ex)=x+ex,则f(x)在点x=1处的切线方程为2x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在长方体ABCD-A1B1C1B1中,AA1=2AB=2AD=4,点E在CC1上且C1E=3EC.利用空间向量解决下列问题:
(1)证明:A1C⊥平面BED;
(2)求锐二面角A1-DE-B 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,长方体ABCD-A1B1C1D1中,D1D=DC=4,AD=2,E为D1C的中点.
(1)求三棱锥D1-ADE的体积.
(2)AC边上是否存在一点M,使得D1A∥平面MDE?若存在,求出AM的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将一个直角三角形绕斜边所在的直线旋转一周,所得的几何体包括(  )
A.一个圆台B.一个圆锥C.一个圆柱D.两个圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)利用“五点法”画出函数$y=2sin(\frac{1}{2}x+\frac{π}{6})$在长度为一个周期的闭区间的简图.
    x-$\frac{π}{3}$  $\frac{2π}{3}$    $\frac{5π}{3}$$\frac{8π}{3}$  $\frac{11π}{3}$    
  $\frac{1}{2}x+\frac{π}{6}$0              $\frac{π}{2}$                  π            $\frac{3π}{2}$               2π               
    y020-20
(2)说明该函数图象可由y=sinx(x∈R)的图象经过怎样平移和伸缩变换得到的.

查看答案和解析>>

同步练习册答案