精英家教网 > 高中数学 > 题目详情
已知函数f(
1
x
)=x+
1
x
-2,则f(x)=(  )
A、x+
1
x
-1
B、=x+
1
x
C、x+
1
x
-2
D、x+
1
x
+2
考点:函数解析式的求解及常用方法
专题:计算题,函数的性质及应用
分析:函数f(
1
x
)=x+
1
x
-2,设t=
1
x
,则函数f(t)=t+
1
t
-2,可得答案.
解答: 解:∵函数f(
1
x
)=x+
1
x
-2,
∴设t=
1
x
,则函数f(t)=t+
1
t
-2,
f(x)=x+
1
x
-2,x≠0,
故选:C
点评:本题考查了换元法求解析式,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+abx+a+2b.且a、b均为非负数,若f(0)=4,则f(1)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知矩形ABCD中,AB=2,AD=1,AE⊥BD,CF⊥BD,沿对角线BD把△BCD折起,使二面角C-BD-A的大小为60°,则线段AC的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,半径为30cm的圆形(O为圆心)铁皮上截取一块矩形材料OABC,其中点B在圆弧上,点A,C在两半径上,现将此矩形材料卷成一个以AB为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设OB与矩形材料的边OA的夹角为θ,圆柱的体积为Vcm3
(Ⅰ)求V关于θ的函数关系式,并写出定义域;
(Ⅱ)求圆柱形罐子体积V的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b>0,椭圆C1的方程为
x2
a2
+
y2
b2
=1,双曲线C2的方程为
x2
a2
-
y2
b2
=1,C1与C2的离心率之积为
3
2
,则C2的渐近线方程为y=kx,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量14151617181920
频数10201616151310
若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润X(单位:元)的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,在(0,+∞)上单调递减,且f(
1
2
)f(-
3
)>0,则方程f(x)=0的根的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若{a2,0,-1}={a,b,0},则a2014+b2014的值为(  )
A、0B、1C、-1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从参加高二年级省学业水平模拟考试的学生中抽出50名学生,并统计了他们的数学成绩,成绩的频率分布直方图如图3所示,其中成绩分组区间是:[40,50)[50,60)[60,70)[70,80)[80,90)[90,100].
(Ⅰ)求图中m的值,估计此次考试成绩的众数;
(Ⅱ)为了帮助成绩弱的学生能顺利通过省学业水平考试,学校决定成立“二帮一”学习小组.在样本中从[90,100]分数段的同学中选两位共同帮助[40,50)分数段的同学中的某一位,已知甲同学的成绩为45分,乙同学成绩96分,求甲、乙两同学恰好被安排在同一小组的概率.

查看答案和解析>>

同步练习册答案