精英家教网 > 高中数学 > 题目详情
已知△ABC中∠ACB=90°,SA⊥面ABC,AD⊥SC.
(Ⅰ)求证:AD⊥面SBC;
(Ⅱ)若BC=1,∠ABC=60°,SA=AB,求AB与平面SBC所成角的正弦值.
分析:(I)由SA⊥面ABC,得BC⊥SA,结合AC⊥BC,利用线面垂直判定定理,证出BC⊥面SAC,从而得到BC⊥AD,再结合SC⊥AD,可得AD⊥面SBC;
(II)连结BD,由AD⊥面SBC,得∠ABD就是AB与平面SBC所成角.再由题中数据算出Rt△ABD中AB=2且BD=
3
2
,利用三角函数的定义得到cos∠ABD=
BD
AB
=
3
4
,得sin∠ABD=
7
4
,即得AB与平面SBC所成角的正弦值.
解答:解:(I)∵SA⊥面ABC,BC?面ABC,∴BC⊥SA
∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的相交直线,
∴BC⊥面SAC
又∵AD?面SAC,∴BC⊥AD,
又∵SC⊥AD,且BC、SC是面SBC内的相交直线,
∴AD⊥面SBC;
(II)连结BD
∵AD⊥面SBC,∴BD是AB在平面ADC内的射影,可得∠ABD就是AB与平面SBC所成角
∵Rt△ABC中,BC=1,∠ABC=60°,∴AB=
BC
cos60°
=2,
又∵Rt△ASB中,SA=AB,∴SB=
2
AB=2
2

因此,Rt△SBC中,SC=
SB2+BC2
=3,得中线BD=
1
2
SC=
3
2

Rt△ABD中,cos∠ABD=
BD
AB
=
3
4
,得sin∠ABD=
1-cos2∠ABD
=
7
4

即AB与平面SBC所成角的正弦值是
7
4
点评:本题在特殊三棱锥中证明线面垂直,并求线面所成角的正弦值.着重考查了空间线面垂直的判定与性质、直线与平面所成角的定义及求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中AC=8,BC=7,∠A=60°,则△ABC的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中AC=4,AB=2若G为△ABC的重心,则
AG
BC
=
4
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知△ABC中AC=4,AB=2若G为△ABC的重心,则
AG
BC
=______.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图23,已知△ABC中,AC=BC,∠CAB=α(定值),⊙O的圆心OAB上,并分别与ACBC相切于点PQ.

图23

(1)求∠POQ的大小;

(2)设DCA延长线上的一个动点,DE与⊙O相切于点M,点ECB的延长线上,试判断∠DOE的大小是否保持不变,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东师大附中高三(上)期末数学试卷(理科)(解析版) 题型:填空题

已知△ABC中AC=4,AB=2若G为△ABC的重心,则=   

查看答案和解析>>

同步练习册答案