精英家教网 > 高中数学 > 题目详情

【题目】已知Sn是等差数列{an}的前n项和,且s6>s7>s5 , 给出下列五个命题:①d>0;②S11>0;③S12<0;④数列{Sn}中的最大项为S11;⑤|a5|>|a7|.其中正确命题的个数为(
A.2
B.3
C.4
D.5

【答案】A
【解析】解:∵等差数列{an}中,s6>s7>s5

∴a1>0,d<0,故①不正确;

∵s6>s7>s5,∴a6=S6﹣S5>0,a7=S7﹣S6<0,

S11=11a1+55d=11(a1+5d)=11a6>0,故②正确;

∵s6>s7>s5,∴a6+a7=S7﹣S5>0,

∴S12=12a1+66d=12(a1+a12)=12(a6+a7)>0,故③不正确;

∴a1+6d<0,a1+5d>0,∴S6最大,故④不正确;

∵a6=S6﹣S5>0,a7=S7﹣S6<0,a6+a7=S7﹣S5>0,

∴|a5|>|a7|,故⑤正确.

故选:A.

【考点精析】通过灵活运用等差数列的前n项和公式,掌握前n项和公式:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 ,向量 垂直,且 .
(1)求数列 的通项公式;
(2)若数列 满足 ,求数列 的前 项和 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中, ,若不等式 恒成立,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知圆C1的参数方程为 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρcosθ+2=0.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2)若直线C3的极坐标方程为 ,设C3与C1的交点为M,N,P为C2上的一点,且△PMN的面积等于1,求P点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春节来临,有农民工兄弟A、B、C、D四人各自通过互联网订购回家过年的火车票,若订票成功即可获得火车票,即他们获得火车票与否互不影响.若A、B、C、D获得火车票的概率分别是 ,其中p1>p3 , 又 成等比数列,且A、C两人恰好有一人获得火车票的概率是
(1)求p1 , p3的值;
(2)若C、D是一家人且两人都获得火车票才一起回家,否则两人都不回家.设X表示A、B、C、D能够回家过年的人数,求X的分布列和期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式ln(x+2)+a(x2+x)≥0对于任意的x∈[﹣1,+∞)恒成立,则实数a的取值范围是(
A.[0,+∞)
B.[0,1]
C.[0,e]
D.[﹣1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点O,左焦点为F1 , 圆O过点F1 , 且与双曲线的一个交点为P,若直线PF1的斜率为 ,则双曲线的渐近线方程为(
A.y=±x
B.y=± x
C.y=± x
D.y=± x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A2n={1,2,3,…,2n}(n∈N* , n≥2).如果对于A2n的每一个含有m(m≥4)个元素的子集P,P中必有4个元素的和等于4n+1,称正整数m为集合A2n的一个“相关数”. (Ⅰ)当n=3时,判断5和6是否为集合A6的“相关数”,说明理由;
(Ⅱ)若m为集合A2n的“相关数”,证明:m﹣n﹣3≥0;
(Ⅲ)给定正整数n.求集合A2n的“相关数”m的最小值.

查看答案和解析>>

同步练习册答案