精英家教网 > 高中数学 > 题目详情
8.若f(x)=$\left\{\begin{array}{l}{lg(x-2),x>0}\\{{x}^{2}-1,x≤0}\end{array}\right.$,则函数y=f(x)的零点是3,-1.

分析 分别令lg(x-2)=0,x2-1=0,解出即可.

解答 解:由lg(x-2)=0,解得:x=3,
由x2-1=0,解得:x=-1,
故函数f(x)的零点是3,-1,
故答案为:3,-1.

点评 本题考察了函数的零点问题,考察函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知复数$z=\frac{5+3i}{1-i}$,则下列说法正确的是(  )
A.z的虚部为4iB.z的共轭复数为1-4i
C.|z|=5D.z在复平面内对应的点在第二象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知sin(2π-α)=$\frac{4}{5}$,α∈($\frac{3π}{2}$,2π),则$\frac{sinα+cosα}{sinα-cosα}$=$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义数列{xn}:x1=$\root{3}{3}$,x2=($\root{3}{3}$)${\;}^{\root{3}{3}}$,…,xn=(xn-1)${\;}^{\root{3}{3}}$(n∈N,且n>1),则使xn是整数的n的最小值是(  )
A.2B.3C.4D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.1+2i+3i2+…+2005i2004的值是(  )
A.-1000-1000iB.-1002-1002iC.1003-1002iD.1005-1000i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{ax+b}{1+{x}^{2}}$是定义在(-1,1)上的奇函数,且f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)证明f(x)在(-1,1)上是增函数;
(Ⅲ)若f(x)-3t+1>0在(-1,0)上恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.与圆(x-2)2+y2=1相切且在两坐标轴上截距相等的直线共有(  )
A.2条B.3条C.4条D.6条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,在几何体ABCDE中,AB=BC=CA=EB=EC=2$\sqrt{3}$,DE=$\sqrt{2}$,点D在底面ABC上的射影O为底面三角形ABC的中心,平面BEC⊥平面ABC.
(1)证明:A,D,E,O四点共面;
(2)求几何体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知正方形ABCD,点E是BC上一点,以AE为边作正方形AEFG.
(1)连结GD,求证△ADG≌△ABE;
(2)连结FC,求证∠FCN=45°;
(3)请问在AB边上是否存在一点Q,使得四边形DQEF是平行四边形?若存在,请证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案